文章目录
1 Hudi 简介
Hudi是一个流式数据湖平台,使用Hudi可以直接打通数据库与数据仓库,连通大数据平台,支持对数据增删改查。Hudi还支持同步数据入库,提供了事务保证、索引优化,是打造实时数仓、实时湖仓一体的新一代技术。下面以我实际工作中遇到的问题,聊下湖仓一体的好处,如有不对,敬请指正。
像传统关系型数据库,MySQL/Oracle等大多支持OLTP,但不支持OLAP。如果写很复杂的SQL,传统关系型数据库根本跑不动,尤其是需要跨系统/跨数据库联合查询分析,传统关系型数据库并不支持(这个可以使用Presto解决)。
而离线数仓无法支持实时/准实时需求,无法记录级更新,当业务表数据量很大时,无论使用增量还是全量接入Hive,对业务库都有很大压力(使用从库可缓解)。Hudi能很好解决这个问题,通过配置可以准实时的写入Hudi,并同步到Hive,相当于业务表数据准实时的同步到Hive,这时取快照或者直接当作ODS层都可,再也不用担心ODS接入延迟了。
2 COW和MOR
Hudi有两种表类型,COW和MOR,如果接入表读多写少可选择COW,如字典表,读少写多使用MOR。
Copy on write:写时复制,使用列式文件格式(如 parquet)存储数据。不同进程在访问同一资源的时候,只有更新操作,才会去复制一份新的数据并更新替换,否则都是访问同一个资源。
Merge on read:读时合并,使用列式+基于行的(例如avro)文件格式的组合存储数据。更新被记录到增量文件中,然后被压缩以同步或异步地生成新版本的列式文件。
如果Hudi表是COPY_ON_WRITE类型,那么映射的Hive表对应是指定的Hive表名,此表中存储着Hudi所有数据。
如果Hudi表类型是MERGE_ON_READ模式,那么映射的Hive表将会有2张,一张后缀为rt ,另一张表后缀为ro。后缀rt对应的Hive表中存储的是Base文件Parquet格式数据+log Avro格式数据,也就是全量数据。后缀为ro Hive表中存储的是存储的是Base文件对应的数据。
3 接入COW模式Hudi表
开发测试时,可在客户端调试
./bin/sql-client.sh embedded -s yarn-session
调试没问题后,在DolphinScheduler配置上线
选择FLINK_STREAM
根据集群类型,选择部署方式
初始化脚本
初始化脚本配置一些参数和建表
SET'yarn.application.queue'='root.etl';set execution.checkpointing.interval='300s';SET execution.checkpointing.mode= AT_LEAST_ONCE;-- 保存checkpoint文件的目录set state.checkpoints.dir='hdfs://cluster/tmp/flink/checkpoints/h_account_holiday';-- 恢复时需设置检查点 set execution.savepoint.path='hdfs://cluster/tmp/flink/checkpoints/h_account_holiday/077107d6530a1c63cb9126258cfe2546/chk-72';set taskmanager.network.memory.buffer-debloat.enabled=true;SET state.checkpoints.num-retained=3;SET execution.checkpointing.externalized-checkpoint-retention = RETAIN_ON_CANCELLATION;set execution.checkpointing.min-pause ='180000';set'table.exec.sink.upsert-materialize'='NONE';set execution.checkpointing.max-concurrent-checkpoints=1;set akka.ask.timeout ='1200s';set web.timeout ='500000';set heartbeat.timeout=500000;SET'connector.mysql-cdc.max-connection-attempts'='5';SET'connector.mysql-cdc.connection-attempts-timeout'='1200s';SET restart-strategy='fixed-delay';SET restart-strategy.fixed-delay.attempts='50';SET restart-strategy.fixed-delay.delay='1min';SET execution.checkpointing.timeout='40min';SET state.backend='rocksdb';SET state.backend.incremental=true;set high-availability='zookeeper';set high-availability.storageDir='hdfs://cluster/tmp/flink/ha-yarn';set high-availability.zookeeper.quorum='bigdata-093:2181,bigdata-094:2181,bigdata-ds-12-195:2181,bigdata-ds-12-198:2181,bigdata-ds-12-199:2181';set high-availability.zookeeper.path.root='/flink_yarn';set yarn.application-attempts='10';CREATE CATALOG cdc_catalog WITH('type'='hive','default-database'='flink_cdc','hive-conf-dir'='/opt/apps/apache-hive-2.1.1-bin/conf');-- 使用刚创建的cataloguse catalog cdc_catalog;-- 选择flink_cdc库use flink_cdc;droptableifexists source_account_holiday;createtableifnotexists source_account_holiday(`id`intprimarykeynot enforced
,workday date,week int,next_workday date,create_time timestamp,update_time timestamp)with('connector'='mysql-cdc','hostname'='10.100.xx.xx','port'='3306','server-time-zone'='Asia/Shanghai','server-id'='6066-6070',-- 注意同一个实例,id不要重复,数字范围要大于并行度'username'='xxx','password'='xxx','debezium.snapshot.mode'='initial','database-name'='xd_account','table-name'='account_holiday','connect.timeout'='1000000');droptableifexists sink_account_holiday;createtableifnotexists sink_account_holiday(`id`intprimarykeynot enforced
,workday date,week int,next_workday date,create_time string -- 注意timestamp需转成string,update_time string -- 注意timestamp需转成string)with('connector'='hudi','path'='hdfs://cluster/tmp/flink/hudi/sink_account_holiday','hoodie.datasource.write.recordkey.field'='id',-- 设置主键'table.type'='COPY_ON_WRITE','write.timezone'='Asia/Shanghai','hive_sync.enabled'='true','hive_sync.mode'='hms','hive_sync.metastore.uris'='thrift://bigdata-003:9083,thrift://bigdata-004:9083,thrift://bigdata-009:9083,thrift://bigdata-012:9083,thrift://bigdata-008:9083,thrift://bigdata-007:9083','hive_sync.db'='hudi',-- 同步到hive hudi库h_account_holiday,自动建表'hive_sync.table'='h_account_holiday','hive_sync.username'='hive','hoodie.datasource.hive_sync.omit_metadata_fields'='true');
脚本
从source表写入sink表
insertinto sink_account_holiday
select
id
,workday
,week
,next_workday
,date_format(create_time,'yyyy-MM-dd HH:mm:ss')-- 注意timestamp需转成string,date_format(update_time,'yyyy-MM-dd HH:mm:ss')-- 注意timestamp需转成stringfrom source_account_holiday;
执行后注意看日志,成功会有Application ID 和 Job ID
可通过Application ID 和 Job ID查看任务运行情况
4 使用Flink SQL查看新接表
使用Flink SQL,可以实时看到数据更新
cd /opt/apps/flink-1.14.4/
./bin/sql-client.sh embedded -s yarn-session
embedded 内嵌模式
Flink SQL>CREATE CATALOG cdc_catalog WITH(>'type'='hive',>'default-database'='flink_cdc',>'hive-conf-dir'='/opt/apps/apache-hive-2.1.1-bin/conf'>);
log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.[INFO]Execute statement succeed.
Flink SQL>use catalog cdc_catalog;[INFO]Execute statement succeed.
Flink SQL>showdatabases;
Flink SQL>use hudi;[INFO]Execute statement succeed.
Flink SQL>select*from h_account_holiday limit10;
5 使用Hive查看新接表
前面初始化脚本必须配置同步到hive,hive查不了source和sink表,只能查同步到hive的表
hive>use hudi;
OK
Time taken: 2.406 seconds
hive>set role admin;
OK
Time taken: 0.093 seconds
hive>select*from h_account_holiday limit10;
OK
SLF4J: Failed toload class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting tono-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.442024-05-1272024-05-132024-01-2015:17:592024-01-2015:17:59452024-05-1862024-05-202024-01-2015:17:592024-01-2015:17:59892024-10-0452024-10-082024-01-2015:17:592024-01-2015:17:591102024-12-1462024-12-162024-01-2015:17:592024-01-2015:17:591122024-12-2162024-12-232024-01-2015:17:592024-01-2015:17:591152024-12-2972024-12-302024-01-2015:17:592024-01-2015:17:59912024-10-0672024-10-082024-01-2015:17:592024-01-2015:17:59932024-10-1372024-10-142024-01-2015:17:592024-01-2015:17:59502024-06-0272024-06-032024-01-2015:17:592024-01-2015:17:59952024-10-2072024-10-212024-01-2015:17:592024-01-2015:17:59Time taken: 0.147 seconds, Fetched: 10row(s)
6 总结
使用这种方案,真正实现了湖仓一体,基本满足了实时和离线需求,且主要使用SQL,开发和维护成本较低。不过,该方案也有个问题,flink cdc 会挂,导致数据没更新,还是要多关注下。
参考链接:
https://blog.csdn.net/qq_32727095/article/details/123863620
https://zhuanlan.zhihu.com/p/471842018
https://zhuanlan.zhihu.com/p/526372429
https://blog.csdn.net/JH_Zhai/article/details/136042662
https://www.jianshu.com/p/0837ada9de76
版权归原作者 光于前裕于后 所有, 如有侵权,请联系我们删除。