0


星辰计划04-深入理解kafka的消息存储和索引设计

消息存储

提到存储不得不说消息的读写,那么kafka他是如何读写数据的呢?

读取消息

1.通过debug(如何debug) 我们可以得到下面的调用栈,最终通过FileRecords来读取保存的数据

写入消息

1.通过debug(如何debug) 我们可以得到下面的调用栈,最终通过FileRecords来写入数据

让我们来梳理一下大的调用链路

1.通过 ReplicaManager找到对应的Partition

2.通过 Partition找到 Log

3.通过Log找到 LogSegment

4.通过LogSegment来读写数据

FileRecords分析

FileRecords是具体与文件打交道 使用的是 Java的Nio FileChannel来进行读写数据的

分析一下 FileRecords的几个重要方法。

读方法如下
/**
     * Return a slice of records from this instance, which is a view into this set starting from the given position
     * and with the given size limit.
     *
     * If the size is beyond the end of the file, the end will be based on the size of the file at the time of the read.
     *
     * If this message set is already sliced, the position will be taken relative to that slicing.
     *
     * @param position The start position to begin the read from
     * @param size The number of bytes after the start position to include
     * @return A sliced wrapper on this message set limited based on the given position and size
     */publicFileRecordsslice(int position,int size)throwsIOException{int availableBytes =availableBytes(position, size);int startPosition =this.start + position;returnnewFileRecords(file, channel, startPosition, startPosition + availableBytes,true);}

这个方法还是比较简单的,入参为要从哪里读 读几个字节的 还是比较好理解的 我们继续看他被谁调用了,他是被这个调用了的 kafka.log.LogSegment#read,我们来看debug。

这个是我的consumer 他已经消费了7条,他下次继续拉取消息会带上这个偏移量7条为起始偏移量。

我们继续来看 他是如何通过偏移量来拉取数据的?

如何通过偏移量来拉取数据的?
/**
 * Find the physical file position for the first message with offset >= the requested offset.
 *
 * The startingFilePosition argument is an optimization that can be used if we already know a valid starting position
 * in the file higher than the greatest-lower-bound from the index.
 *
 * @param offset The offset we want to translate
 * @param startingFilePosition A lower bound on the file position from which to begin the search. This is purely an optimization and
 * when omitted, the search will begin at the position in the offset index.
 * @return The position in the log storing the message with the least offset >= the requested offset and the size of the
  *        message or null if no message meets this criteria.
 */@threadsafeprivate[log]def translateOffset(offset:Long, startingFilePosition:Int=0): LogOffsetPosition ={//通过索引 来进行二分查找找到偏移量的真实log文件当中的物理偏移val mapping = offsetIndex.lookup(offset)//构造需要拉取的数据的起始物理地址和 具体要拉多少数据 
  log.searchForOffsetWithSize(offset, max(mapping.position, startingFilePosition))}

可以看到最终构造了这样一个 对象

publicstaticclassLogOffsetPosition{//最开始的偏移量publicfinallong offset;//物理偏移量publicfinalint position;//要拉取的字节数publicfinalint size;}

画板

我们再来看一下 fetchSize的计算规则

最大拉取字节数的限制
val adjustedMaxSize =if(minOneMessage) math.max(maxSize, startOffsetAndSize.size)

maxPosition 这个是日志文件最大的物理偏移量,而这个startPosition使我们刚才通过二分查找找到的起始物理地址
他这个一看就很明白 不能超过文件的所存储的范围。这个相减就是能读取到的最大字节数据大小
val fetchSize:Int= min((maxPosition - startPosition).toInt, adjustedMaxSize)

写方法如下
/**
 * Append a set of records to the file. This method is not thread-safe and must be
 * protected with a lock.
 *
 * @param records The records to append
 * @return the number of bytes written to the underlying file
 */publicintappend(MemoryRecords records)throwsIOException{if(records.sizeInBytes()>Integer.MAX_VALUE - size.get())thrownewIllegalArgumentException("Append of size "+ records.sizeInBytes()+" bytes is too large for segment with current file position at "+ size.get());int written = records.writeFullyTo(channel);
    size.getAndAdd(written);return written;}

可以看到几个重要信息

1.当前kafka日志文件

2.日志文件的大小 已经写入了1869个字节

3.日志文件的范围 start为起始偏移量 end为最大偏移量

他这个是要将MemoryRecords当中的buffer里面的字节全都写入到文件当中

推送消息(将消息发送给消费者或者其他broker的方法)
/**
 * destChannel 是目标通道
 * offset是物理偏移 
 * length是发送的字节数据大小
 *  
 */@OverridepubliclongwriteTo(TransferableChannel destChannel,long offset,int length)throwsIOException{long newSize =Math.min(channel.size(), end)- start;int oldSize =sizeInBytes();if(newSize < oldSize)thrownewKafkaException(String.format("Size of FileRecords %s has been truncated during write: old size %d, new size %d",
            file.getAbsolutePath(), oldSize, newSize));long position = start + offset;long count =Math.min(length, oldSize - offset);return destChannel.transferFrom(channel, position, count);}

通过debug可以看到 我们要通过这个方法 这个方法底层就是 零拷贝的系统调用sengfile 发送给consumer或者broker

这个方法底层调用了 java.nio.channels.FileChannel#transferTo 这个方法,这个方法是java sendfile系统调用api

Kafka 将消息封装成一个个 Record,并以自定义的格式序列化成二进制字节数组进行保存:

如上图所示,消息严格按照顺序进行追加,一般来说,左边的消息存储时间都要小于右边的消息,需要注意的一点是,在 0.10.0.0 以后的版本中,Kafka 的消息体中增加了一个用于记录时间戳的字段,而这个字段可以有 Kafka Producer 端自定义,意味着客户端可以打乱日志中时间的顺序性。

Kafka 的消息存储会按照该主题的分区进行隔离保存,即每个分区都有属于自己的的日志,在 Kafka 中被称为分区日志(partition log),每条消息在发送前计算到被发往的分区中,broker 收到日志之后把该条消息写入对应分区的日志文件中:

到底 kafka的消息到底是怎么存储的?什么结构?

我们可以看到当我们写入数据时,是通过MemoryRecords来写入的这个时候我们可以看下 他里面的buffer的字节是啥样的,就能看到数据保存的是啥

最终我们找到这个类 org.apache.kafka.common.record.DefaultRecord(请注意我看的是V2的版本代码 老的版本是还有校验和)

可以看到这个注释

* Record =>
*   Length => Varint  长度
*   Attributes => Int8  扩展字段
*   TimestampDelta => Varlong  相对时间戳
*   OffsetDelta => Varint 相对偏移量
*   Key => Bytes  key 
*   Value => Bytes  value
*   Headers => [HeaderKey HeaderValue] 还有头
*     HeaderKey => String
*     HeaderValue => Bytes

我们及细看他的writeTo方法

/**
 * Write the record to `out` and return its size.
 */publicstaticintwriteTo(DataOutputStream out,int offsetDelta,long timestampDelta,ByteBuffer key,ByteBuffer value,Header[] headers)throwsIOException{//整个record的长度int sizeInBytes =sizeOfBodyInBytes(offsetDelta, timestampDelta, key, value, headers);ByteUtils.writeVarint(sizeInBytes, out);//扩展字段 暂时没啥用byte attributes =0;// there are no used record attributes at the moment
    out.write(attributes);//时间戳ByteUtils.writeVarlong(timestampDelta, out);//偏移量ByteUtils.writeVarint(offsetDelta, out);if(key ==null){ByteUtils.writeVarint(-1, out);}else{int keySize = key.remaining();//key的长度ByteUtils.writeVarint(keySize, out);//key的值Utils.writeTo(out, key, keySize);}if(value ==null){ByteUtils.writeVarint(-1, out);}else{int valueSize = value.remaining();//value的长度ByteUtils.writeVarint(valueSize, out);//value的值Utils.writeTo(out, value, valueSize);}if(headers ==null)thrownewIllegalArgumentException("Headers cannot be null");//头的长度ByteUtils.writeVarint(headers.length, out);for(Header header : headers){String headerKey = header.key();if(headerKey ==null)thrownewIllegalArgumentException("Invalid null header key found in headers");//头的keybyte[] utf8Bytes =Utils.utf8(headerKey);ByteUtils.writeVarint(utf8Bytes.length, out);
        out.write(utf8Bytes);//头的valuebyte[] headerValue = header.value();if(headerValue ==null){ByteUtils.writeVarint(-1, out);}else{ByteUtils.writeVarint(headerValue.length, out);
            out.write(headerValue);}}returnByteUtils.sizeOfVarint(sizeInBytes)+ sizeInBytes;}

可以简单画一下 这个是存储的record数据

画板

总结一下:

  1. 消息的读 是通过索引文件来索引找到真实物理地址,然后连续读,将数据读取出来的。
  2. 消息的推送 是将读取到的数据通过sendfile发送给拉取数据的客户端。
  3. 消息的写 通过直接append文件,顺序写的方式,将数据追加到磁盘文件当中。

索引设计

为什么需要索引?什么是索引?

    在mq这种存储当中,如何要能够快速找到需要推给consumer的消息?所以能够快速查找数据的索引结构必不可少。索引是一种提高访问数据的数据结构。

索引的结构是啥?索引是怎么维护的?

kafka如何设计的索引呢?kafka面临的是海量消息的存储,意味着如果少存一个字段就可能减少天量数据的存储。所以索引就尽量少存数据能够找到最终数据,kafka采用的是稀疏索引,什么是稀疏索引?稀疏索引是一种特殊的索引类型,他不会为每一个存储在磁盘上的数据块创建一个索引项。

画板

可以看到画的这张图 就是稀疏索引,他并没有为所有数据创建索引项 只创建几个索引项

offset 1:对应起始物理地址1,offset3:它的物理地址的起始地址40。

偏移量索引

可以看到这个索引的定义,可以看到一个索引项包含两个字段 一个是offset,一个是物理地址,总共8个字节,请注意一点 这个offset 起始保存的相对offset,并不是绝对的offset

caseclass OffsetPosition(offset:Long, position:Int)extends IndexEntry {overridedef indexKey = offset
  overridedef indexValue = position.toLong
}

可以看到是8个字节

时间戳索引

他还有一个索引就是时间戳索引 也是两个字段 8个字节保存时间戳 4个字节保存offset,也就意味着如果你想通过时间戳来查询数据,先通过时间戳找到offset再通过offset的索引结构再找到物理地址。

/**
 * The mapping between a timestamp to a message offset. The entry means that any message whose timestamp is greater
 * than that timestamp must be at or after that offset.
 * @param timestamp The max timestamp before the given offset.
 * @param offset The message offset.
 */caseclass TimestampOffset(timestamp:Long, offset:Long)extends IndexEntry {overridedef indexKey = timestamp
  overridedef indexValue = offset
}
如何借用这个偏移量索引来查找数据呢?

那他是如何借用这个索引来查找数据呢?我们来详细分析一个拉取consumer拉取数据的时候 怎么利用的?

@threadsafeprivate[log]def translateOffset(offset:Long, startingFilePosition:Int=0): LogOffsetPosition ={//先二分查找 找到小于这个目标offset的 索引信息 val mapping = offsetIndex.lookup(offset)//再依次遍历找到最终 需要的索引信息
  log.searchForOffsetWithSize(offset, max(mapping.position, startingFilePosition))}

最终调用到了 kafka.log.OffsetIndex#lookup => kafka.log.AbstractIndex#indexSlotRangeFor 这个方法可以看到 通过二分查找 找到起始的需要拉取的消息的起始物理地址。

privatedef indexSlotRangeFor(idx: ByteBuffer, target:Long, searchEntity: IndexSearchType):(Int,Int)={// check if the index is empty//如果索引文件是空的那么就依次遍历if(_entries ==0)return(-1,-1)def binarySearch(begin:Int, end:Int):(Int,Int)={// binary search for the entryvar lo = begin
    var hi = end
    while(lo < hi){val mid =(lo + hi +1)>>>1val found = parseEntry(idx, mid)val compareResult = compareIndexEntry(found, target, searchEntity)if(compareResult >0)
      hi = mid -1elseif(compareResult <0)
      lo = mid
      elsereturn(mid, mid)}(lo,if(lo == _entries -1)-1else lo +1)}//这个 _warmEntries 不知道是啥 大概率 firstHotEntry=0,除非索引项非常多 数据量非常大  这里可能是一种优化手段 待会我们继续分析val firstHotEntry = Math.max(0, _entries -1- _warmEntries)// check if the target offset is in the warm section of the indexif(compareIndexEntry(parseEntry(idx, firstHotEntry), target, searchEntity)<0){//二分查找找到小于目标target offset的 索引项的下标return binarySearch(firstHotEntry, _entries -1)}// check if the target offset is smaller than the least offsetif(compareIndexEntry(parseEntry(idx,0), target, searchEntity)>0)return(-1,0)

  binarySearch(0, firstHotEntry)}

什么时候索引文件不是空的呢?什么往里面添加呢?这个时候我们看到这个方法

kafka.log.LogSegment#append

@nonthreadsafedef append(largestOffset:Long,
           largestTimestamp:Long,
           shallowOffsetOfMaxTimestamp:Long,
           records: MemoryRecords):Unit={if(records.sizeInBytes >0){...// append the messagesval appendedBytes = log.append(records)...// append an entry to the index (if needed)
    可以看到这里有个调优项   当保存的数据超过 4kb时就会往索引文件当中添加索引项
    if(bytesSinceLastIndexEntry > indexIntervalBytes){
      offsetIndex.append(largestOffset, physicalPosition)
      timeIndex.maybeAppend(maxTimestampSoFar, offsetOfMaxTimestampSoFar)
      bytesSinceLastIndexEntry =0}
    bytesSinceLastIndexEntry += records.sizeInBytes
  }}

可以 通过 log.index.interval.bytes 参数进行控制,默认大小为 4 KB,意味着 Kafka 至少写入 4KB 消息数据之后,才会在索引文件中增加一个索引项。

总结一下 怎么使用偏移量搜索的

偏移量索引搜索

画板

步骤1.对应源码当中的 kafka.log.LogSegment#translateOffset 的

val mapping = offsetIndex.lookup(offset) 这一行

步骤2. 对应源码当中的 kafka.log.LogSegment#translateOffset 的

log.searchForOffsetWithSize(offset, max(mapping.position, startingFilePosition)) 这一行

如何借用这个时间戳索引来查找数据呢?

kafka.log.LogSegment#findOffsetByTimestamp

def findOffsetByTimestamp(timestamp:Long, startingOffset:Long= baseOffset): Option[TimestampAndOffset]={// Get the index entry with a timestamp less than or equal to the target timestamp//先通过时间戳二分查找找到小于这个timestamp 的索引信息val timestampOffset = timeIndex.lookup(timestamp)//再通过这个时间戳对应的偏移量 再去 偏移量索引去找 找到索引信息val position = offsetIndex.lookup(math.max(timestampOffset.offset, startingOffset)).position
  //再依次顺序遍历直到找到符合的数据的地址信息// Search the timestamp
  Option(log.searchForTimestamp(timestamp, position, startingOffset))}
public TimestampAndOffset searchForTimestamp(long targetTimestamp, int startingPosition, long startingOffset){for(RecordBatch batch : batchesFrom(startingPosition)){if(batch.maxTimestamp()>= targetTimestamp){// We found a messagefor(Record record : batch){
        long timestamp = record.timestamp();//大于等与目标时间戳 且 偏移量大于等于查找到的偏移量if(timestamp >= targetTimestamp && record.offset()>= startingOffset)returnnew TimestampAndOffset(timestamp, record.offset(),
                                                  maybeLeaderEpoch(batch.partitionLeaderEpoch()));}}}returnnull;}

可以看到这个图 就是如下所示

画板

kafka索引性能好的原因

1.mmap技术 通过mmap系统调用老构建索引文件的page cache 缓存,优化了索引文件的读写性能 ,通过AbstractIndex 源码我们可以看到

@volatileprotectedvar mmap: MappedByteBuffer ={val newlyCreated = file.createNewFile()val raf =if(writable)new RandomAccessFile(file,"rw")elsenew RandomAccessFile(file,"r")try{/* pre-allocate the file if necessary */if(newlyCreated){if(maxIndexSize < entrySize)thrownew IllegalArgumentException("Invalid max index size: "+ maxIndexSize)
      raf.setLength(roundDownToExactMultiple(maxIndexSize, entrySize))}/* memory-map the file */
    _length = raf.length()val idx ={if(writable)
      raf.getChannel.map(FileChannel.MapMode.READ_WRITE,0, _length)else
      raf.getChannel.map(FileChannel.MapMode.READ_ONLY,0, _length)}/* set the position in the index for the next entry */if(newlyCreated)
    idx.position(0)else// if this is a pre-existing index, assume it is valid and set position to last entry
    idx.position(roundDownToExactMultiple(idx.limit(), entrySize))
    idx
  }finally{
    CoreUtils.swallow(raf.close(), AbstractIndex)}}
  1. 冷热分区的二分查找(1.1之后的版本开始有的)

首先这个是怎么诞生的呢?那就不得不说如果没有这个会产生什么问题,这个索引是借助了mmap技术(内存映射技术),那他映射的是哪个内存呢?是映射的操作系统的内核缓存,也就是我们熟知的page cache,可以看到我们程序的MapperBuffer 与 Page cache当中的内存建立了映射,page cache又是映射的具体的文件块,由于page cache是每一个4KB的分块,并不会把所有的数据读取到内存当中来。所以当应用程序读取到不在page cache当中的数据,操作系统会重新把需要的数据加载到page cache中来,这个就是缺页中断,由于这个重新读取文件内容会阻塞读取线程,导致性能问题。

画板

kafka 偏移量索引 二分查找时 有可能会频繁导致 缺页中断,由于每次基本上都是拉取最新的数据,所以最后的索引项基本都是热数据。让我们来对比一下他们的优化前后的差异

画板

关于为什么设置热区大小为8192字节,官方给出的解释,这是一个合适的值:

1. 足够小,能保证热区的页数小于等于3,那么当二分查找时的页面都很大可能在page cache中。也就是说如果设置的太大了,那么可能出现热区中的页不在page cache中的情况
2. 足够大,8192个字节,对于位移索引,则为1024个索引项,可以覆盖4MB的消息数据,足够让大部分在in-sync内的节点在热区查询。

画板

  1. 顺序写kafka.log.OffsetIndex#append 可以看到这个 偏移量索引的源码 这个就是往文件的末尾处添加
/**
 * Append an entry for the given offset/location pair to the index. This entry must have a larger offset than all subsequent entries.
 * @throws IndexOffsetOverflowException if the offset causes index offset to overflow
 */def append(offset:Long, position:Int):Unit={
  inLock(lock){
    require(!isFull,"Attempt to append to a full index (size = "+ _entries +").")if(_entries ==0|| offset > _lastOffset){
      trace(s"Adding index entry $offset => $position to ${file.getAbsolutePath}")
      mmap.putInt(relativeOffset(offset))
      mmap.putInt(position)
      _entries +=1
      _lastOffset = offset
      require(_entries * entrySize == mmap.position(), s"$entries entries but file position in index is ${mmap.position()}.")}else{thrownew InvalidOffsetException(s"Attempt to append an offset ($offset) to position $entries no larger than"+
                                       s" the last offset appended (${_lastOffset}) to ${file.getAbsolutePath}.")}}}

总结

kafka的消息存储和索引设计是非常优秀的,使用了相当多的操作系统的优良特性

1.mmap技术来优化 索引文件的读写,以及 索引文件的顺序写。

2.log存储进行分段,并且不立马刷盘,而是定时刷新落盘,这个为了追求极致的性能

3.零拷贝sendfile 的使用,将日志内容发送给consumer和同步给其他broker.

4.冷热分区的二分查找 减少 page cache 缺页中断

所以一个好的中间件 必须与操作系统特性紧密结合,才能让性能直接起飞。

标签: kafka linq 分布式

本文转载自: https://blog.csdn.net/qq_38324542/article/details/142490678
版权归原作者 大鸟-0101 所有, 如有侵权,请联系我们删除。

“星辰计划04-深入理解kafka的消息存储和索引设计”的评论:

还没有评论