作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO
联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬
学习必须往深处挖,挖的越深,基础越扎实!
阶段1、深入多线程
阶段2、深入多线程设计模式
阶段3、深入juc源码解析
阶段4、深入jdk其余源码解析
阶段5、深入jvm源码解析
码哥源码部分
码哥讲源码-原理源码篇【2024年最新大厂关于线程池使用的场景题】
码哥讲源码【炸雷啦!炸雷啦!黄光头他终于跑路啦!】
码哥讲源码-【jvm课程前置知识及c/c++调试环境搭建】
码哥讲源码-原理源码篇【揭秘join方法的唤醒本质上决定于jvm的底层析构函数】
码哥源码-原理源码篇【Doug Lea为什么要将成员变量赋值给局部变量后再操作?】
码哥讲源码【你水不是你的错,但是你胡说八道就是你不对了!】
码哥讲源码【谁再说Spring不支持多线程事务,你给我抽他!】
终结B站没人能讲清楚红黑树的历史,不服等你来踢馆!
打脸系列【020-3小时讲解MESI协议和volatile之间的关系,那些将x86下的验证结果当作最终结果的水货们请闭嘴】
Zookeeper是Apache开源的一款分布式协调框架,它提供了一种多层级的节点命名空间,可以提供诸如数据发布/订阅、分布式协调/通知、集群管理、Master 选举、配置管理、分布式锁等各种分布式协调服务。
Zookeeper的核心是它底层的ZAB协议。ZAB协议是分布式CAP理论的典型实践,我已经在分布式理论篇中详细讲解过了,感兴趣的读者可以看一看,本文不再赘述。
本章,我也不会介绍Zookeeper的各种语法,这些东西大家可以参考Apache官方文档。我主要简单介绍下Zookeeper的系统模型,然后重点讲一讲Zookeeper的几种典型使用场景,特别是作为注册中心时与Eureka的对比。
一、数据模型
ZooKeeper拥有一个多层级的节点命名空间,和标准的文件系统非常相似,采用树形层次结构。ZooKeeper树中的每个节点被称为Znode,每个节点也可以拥有子节点:
Zookeeper为了保证高吞吐和低延迟, 在内存中维护 了这个树状的目录结构,这种特性使得Zookeeper 不能用于存放大量的数据 ,每个节点的存放数据上限为 1M 。
在Zookeeper中一共有4种类型的节点:PERSISTENT(持久节点)、EPHEMERAL(临时节点)、PERSISTENT_SEQUENTIAL(持久顺序节点)、EPHEMERAL_SEQUENTIAL(临时顺序节点)。
1.1 节点类型
PERSISTENT
持久节点,是指数据节点被创建后,就会一直存在于ZooKeeper服务器上,除非有删除操作主动清除该节点。
EPHEMERAL
临时节点,是指节点的生命周期和客户端会话是绑定的,如果客户端会话失效,那么这个节点就会被自动清理掉。
PERSISTENT_SEQUENTIAL
持久顺序节点,是指持久节点具备了额外的顺序性。在ZooKeeper中,每个父节点都会为它的第一级子节点维护一份顺序,用于记录每个顺序子节点创建的先后顺序。(ZooKeeper会自动给节点加上一个数字后缀,以表明顺序)
EPHEMERAL_SEQUENTIAL
临时顺序节点,是指临时节点具备了额外的顺序性。
1.2 节点状态
每个数据节点除了存储数据内容外,还会存储节点本身的一些状态信息:
属性描述czxid节点被创建的zxidmzxid节点被修改的zxidctime节点被创建的时间mtime节点被修改的时间version节点被创建的版本号cversion节点所拥有的子结点被修改的版本号aversion节点的ACL被修改的版本号ephemeralOwner如果此节点为临时节点,那么该值为此节点拥有者的会话ID;否则为0dataLength节点数长度numChildren该节点的子节点数量
在Zookeeper中,对节点的每一次修改操作,都会导致该节点的版本号增加,每个节点维护着三个版本号,他们分别为:
- version :节点数据版本号
- cversion :子节点版本号
- aversion :节点所拥有的ACL版本号
以version为例,节点首次被创建时,version为0,每次对节点的数据内容进行修改,都会导致version自增1。通过版本号机制,可以很容易的利用Zookeeper实现CAS操作:
ZooKeeper在处理节点的内容更新时,会首先比较客户端上送的version与服务端该节点的版本号是否相同,如果相同则允许修改,否则抛出BadVersionException。
如果客户端上送version为-1,则表示忽略版本号校验,强制更新数据。
二、使用场景
接下来,我们来重点看看Zookeeper的几种典型使用场景。
2.1 分布式协调
这个其实是Zookeeper很经典的一个用法。比如A系统发送一个消息到MQ,然后B系统消费到了该消息。那么A系统如何知道B系统的处理结果呢?
用Zookeeper就可以实现分布式系统之间的这种协调工作。A系统发送消息之后,可以在ZK上对该消息对应的node注册一个监听器,B系统处理完消息后就修改ZK上该节点的值,那么A系统就会立马收到通知。
很多开源框架都利用了Zookeeper来实现分布式协调,比如Kafka其实就整合了Zookeeper。
2.2 分布式锁
前面我们讲过Redis分布式锁,Zookeeper也可以实现分布式锁,而且生产中更常用。
比如:系统A和系统B同时尝试对某个数据值进行修改,那么可以先让其中一个系统获取到Zookeeper上的一把分布式锁(本质是创建一个临时顺序节点),接着执行操作;然后另外一个系统也尝试去创建同名znode,结果发现自己创建不了,因为被别人创建了,那只能等着,等第一个系统执行完释放锁后自己再执行。
关于如何利用Zookeeper实现一个分布式锁,我会在下一章专门讲解。
2.3 配置管理
Zookeeper还可以用作很多系统的配置管理,比如Kafka、Storm等很多分布式系统都会选用ZK来做一些元数据、配置信息的管理,包括Dubbo的注册中心也支持ZK,下图是Zookeeper作为注册中心时的基本原理:
Leader节点负责服务注册,它可以把数据同步给Follower,读的时候Leader/Follower都可以读。一旦Leader挂了,要重新选举Leader,选举过程中为了保证强一致性(C),不接受服务注册,知道选举完成。
对比Eureka
我之前也介绍过Eureka注册中心,这里就进行下对比:
Eureka是peer-to-peer模式,每个节点都是对等的,如果数据还没同步到其它Eureka Server,当前节点就挂掉了的话,Client还可以继续从别的Server节点上拉取注册表。所以Eureka其实是保证了可用性(A),但牺牲了强一致性(A):
最后总结下,Zookeeper作为注册中心时,与Eureka的区别:
Zookeeper
设计原则:CP,数据强一致
优点:
- 时效性高,注册信息的变更可以秒级感知;
缺点:
- 网络分区会影响Leader选举,可能导致整个集群不可用 ;
- 很难支撑大规模的服务实例,服务上下线的时候,Leader节点会瞬间推送数据到所有的其他服务实例,所以一旦服务规模太大,到了几千个服务实例的时候,会导致网络带宽被大量占用;
适合场景:
单机房集群,对数据一致性要求较高的场景。
Eureka
设计原则: AP,服务高可用
优点:
- 集群的可用性较高;
缺点:
- 默认配置下,数据时效性非常差,服务发现/注册的感知可能要几十秒甚至几分钟;
- 也很难支撑大规模的服务实例,因为每个Eureka Server都要接受大量心跳请求,同时还要与其它Eureka Server进行P2P通信,服务实例太多后对集群的压力会非常大,很难抗住几千个服务实例;
适合场景:
云机房集群,跨越多机房部署,对注册中心服务可用性要求较高。
2.4 高可用
分布式系统采用Zookeeper来实现高可用还是很常见的,比如Hadoop HDFS就是基于Zookeer来开发HA高可用机制的。一般我们的系统都会采用主备架构,那么可以在Zookeeper上注册一个node,node的值就是当前活跃的主节点的名称。如果主节点挂了,那么Zookeeper会立马感知到,从而进行主备切换:
三、总结
本章,我介绍了Zookeeper的数据模型和最典型的几种使用场景,并在作为注册中心时,对Zookeeper和Eureka进行了比较。
版权归原作者 smart哥 所有, 如有侵权,请联系我们删除。