0


SVM 超平面计算例题

SVM Summary

在这里插入图片描述

Example

Suppose the dataset contains two positive samples

  1. x
  2. (
  3. 1
  4. )
  5. =
  6. [
  7. 1
  8. ,
  9. 1
  10. ]
  11. T
  12. x^{(1)}=[1,1]^T
  13. x(1)=[1,1]T and
  14. x
  15. (
  16. 2
  17. )
  18. =
  19. [
  20. 2
  21. ,
  22. 2
  23. ]
  24. T
  25. x^{(2)}=[2,2]^T
  26. x(2)=[2,2]T, and two negative samples
  27. x
  28. (
  29. 3
  30. )
  31. =
  32. [
  33. 0
  34. ,
  35. 0
  36. ]
  37. T
  38. x^{(3)}=[0,0]^T
  39. x(3)=[0,0]T and
  40. x
  41. (
  42. 4
  43. )
  44. =
  45. [
  46. 1
  47. ,
  48. 0
  49. ]
  50. T
  51. x^{(4)}=[-1,0]^T
  52. x(4)=[−1,0]T. Please calculate the SVM decision hyperplane.

Calculate

  1. min
  2. λ
  3. J
  4. (
  5. λ
  6. )
  7. =
  8. 1
  9. 2
  10. i
  11. =
  12. 1
  13. N
  14. j
  15. =
  16. 1
  17. N
  18. λ
  19. i
  20. λ
  21. j
  22. y
  23. (
  24. i
  25. )
  26. y
  27. (
  28. j
  29. )
  30. (
  31. x
  32. (
  33. i
  34. )
  35. )
  36. T
  37. x
  38. (
  39. j
  40. )
  41. i
  42. =
  43. 1
  44. N
  45. λ
  46. i
  47. \min_\lambda\ {\mathcal{J}(\lambda)} = \frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N \lambda_i\lambda_jy^{(i)}y^{(j)}(x^{(i)})^Tx^{(j)} - \sum_{i=1}^N\lambda_i
  48. λmin J(λ)=21i=1Nj=1N​λi​λjy(i)y(j)(x(i))Tx(j)−i=1N​λi
  49. s
  50. .
  51. t
  52. .
  53. λ
  54. i
  55. 0
  56. ,
  57. i
  58. =
  59. 1
  60. N
  61. λ
  62. i
  63. y
  64. (
  65. i
  66. )
  67. =
  68. 0
  69. s.t. \ \ \ \ \ \ \ \ \lambda_i \geqslant 0,\ \ \ \ \ \ \sum_{i=1}^N\lambda_iy^{(i)}=0
  70. s.t. λi​⩾0, i=1N​λiy(i)=0

  1. D
  2. a
  3. t
  4. a
  5. s
  6. e
  7. t
  8. D
  9. :
  10. {
  11. x
  12. :
  13. {
  14. [
  15. 1
  16. ,
  17. 1
  18. ]
  19. ,
  20. [
  21. 2
  22. ,
  23. 2
  24. ]
  25. ,
  26. [
  27. 0
  28. ,
  29. 0
  30. ]
  31. ,
  32. [
  33. 1
  34. ,
  35. 0
  36. ]
  37. }
  38. ,
  39. y
  40. :
  41. {
  42. 1
  43. ,
  44. 1
  45. ,
  46. 1
  47. ,
  48. 1
  49. }
  50. }
  51. Dataset\ D:\{x:\{[1,1],[2,2],[0,0],[-1,0]\},y:\{1,1,-1,-1\}\}
  52. Dataset D:{x:{[1,1],[2,2],[0,0],[−1,0]},y:{1,1,−1,−1}}可得下式:
  53. min
  54. λ
  55. J
  56. (
  57. λ
  58. )
  59. =
  60. 1
  61. 2
  62. (
  63. 2
  64. λ
  65. 1
  66. 2
  67. +
  68. 8
  69. λ
  70. 2
  71. 2
  72. +
  73. λ
  74. 4
  75. 2
  76. +
  77. 8
  78. λ
  79. 1
  80. λ
  81. 2
  82. +
  83. 2
  84. λ
  85. 1
  86. λ
  87. 4
  88. +
  89. 4
  90. λ
  91. 2
  92. λ
  93. 4
  94. )
  95. λ
  96. 1
  97. λ
  98. 2
  99. λ
  100. 3
  101. λ
  102. 4
  103. s
  104. .
  105. t
  106. λ
  107. 1
  108. 0
  109. ,
  110. λ
  111. 2
  112. 0
  113. ,
  114. λ
  115. 3
  116. 0
  117. ,
  118. λ
  119. 4
  120. 0
  121. λ
  122. 1
  123. +
  124. λ
  125. 2
  126. λ
  127. 3
  128. λ
  129. 4
  130. =
  131. 0
  132. \min_\lambda\ {\mathcal{J}(\lambda)} = \frac{1}{2}(2\lambda_1^2+8\lambda_2^2+\lambda_4^2+8\lambda_1\lambda_2+2\lambda_1\lambda_4+4\lambda_2\lambda_4) \\- \lambda_1-\lambda_2-\lambda_3-\lambda_4\\ s.t \ \ \ \ \ \ \ \lambda_1 \geqslant 0,\lambda_2\geqslant 0,\lambda_3\geqslant 0,\lambda_4\geqslant 0\\ \lambda_1+\lambda_2-\lambda_3-\lambda_4 = 0
  133. λmin J(λ)=21​(2λ12​+8λ22​+λ42​+8λ1​λ2​+2λ1​λ4​+4λ2​λ4​)−λ1​−λ2​−λ3​−λ4s.t λ1​⩾02​⩾03​⩾04​⩾0λ1​+λ2​−λ3​−λ4​=0

since

  1. λ
  2. 1
  3. +
  4. λ
  5. 2
  6. =
  7. λ
  8. 3
  9. +
  10. λ
  11. 4
  12. λ
  13. 3
  14. =
  15. λ
  16. 1
  17. +
  18. λ
  19. 2
  20. λ
  21. 4
  22. \lambda_1+\lambda_2 = \lambda_3+\lambda_4 \to \lambda_3 = \lambda_1+\lambda_2 - \lambda_4
  23. λ1​+λ2​=λ3​+λ4​→λ3​=λ1​+λ2​−λ4​:
  24. min
  25. λ
  26. J
  27. (
  28. λ
  29. )
  30. =
  31. λ
  32. 1
  33. 2
  34. +
  35. 4
  36. λ
  37. 2
  38. 2
  39. +
  40. 1
  41. 2
  42. λ
  43. 4
  44. 2
  45. +
  46. 4
  47. λ
  48. 1
  49. λ
  50. 2
  51. +
  52. λ
  53. 1
  54. λ
  55. 4
  56. +
  57. 2
  58. λ
  59. 2
  60. λ
  61. 4
  62. 2
  63. λ
  64. 1
  65. 2
  66. λ
  67. 2
  68. s
  69. .
  70. t
  71. λ
  72. 1
  73. 0
  74. ,
  75. λ
  76. 2
  77. 0
  78. {
  79. J
  80. λ
  81. 1
  82. =
  83. 2
  84. λ
  85. 1
  86. +
  87. 4
  88. λ
  89. 2
  90. +
  91. λ
  92. 4
  93. 2
  94. =
  95. 0
  96. J
  97. λ
  98. 2
  99. =
  100. 4
  101. λ
  102. 1
  103. +
  104. 8
  105. λ
  106. 2
  107. +
  108. 2
  109. λ
  110. 4
  111. 2
  112. =
  113. 0
  114. J
  115. λ
  116. 4
  117. =
  118. λ
  119. 1
  120. +
  121. 2
  122. λ
  123. 2
  124. +
  125. λ
  126. 4
  127. =
  128. 0
  129. \min_\lambda\ {\mathcal{J}(\lambda)} = \lambda_1^2+4\lambda_2^2+\frac{1}{2}\lambda_4^2+4\lambda_1\lambda_2+\lambda_1\lambda_4+2\lambda_2\lambda_4 - 2\lambda_1-2\lambda_2\\ s.t \ \ \ \ \ \ \ \lambda_1 \geqslant 0,\lambda_2\geqslant 0 \\ \\ \Longrightarrow ^{求偏导}\\ \left\{\begin{matrix} \frac{\partial \mathcal{J}}{\partial \lambda_1} = 2\lambda_1 +4\lambda_2+\lambda_4-2=0 \\ \frac{\partial \mathcal{J}}{\partial \lambda_2} = 4\lambda_1 +8\lambda_2+2\lambda_4-2=0 \\ \frac{\partial \mathcal{J}}{\partial \lambda_4} = \lambda_1 +2\lambda_2+\lambda_4=0 \end{matrix}\right.
  130. λmin J(λ)=λ12​+4λ22​+21​λ42​+4λ1​λ2​+λ1​λ4​+2λ2​λ4​−2λ1​−2λ2s.t λ1​⩾02​⩾0⟹求偏导⎩⎨⎧​∂λ1​∂J​=2λ1​+4λ2​+λ4​−2=0∂λ2​∂J​=4λ1​+8λ2​+2λ4​−2=0∂λ4​∂J​=λ1​+2λ2​+λ4​=0

Lagrange无解,所以极小值在边界上:

  • 令 λ 1 = 0 , λ 3 = λ 1 + λ 2 − λ 4 \lambda_1 = 0, \lambda_3 = \lambda_1+\lambda_2 - \lambda_4 λ1​=0,λ3​=λ1​+λ2​−λ4​带入 J ( λ ) \mathcal{J}(\lambda) J(λ)中,得: J ( λ ) = 4 λ 2 2 + 1 2 λ 4 2 + + 2 λ 2 λ 4 − 2 λ 2 ⟹ 求 偏 导 { ∂ J ∂ λ 2 = 8 λ 2 + 2 λ 4 − 2 = 0 ∂ J ∂ λ 4 = 2 λ 2 + λ 4 = 0 ⟹ { λ 2 = 1 2 λ 4 = − 1 ( ≤ 0 不 满 足 s . t . ) 再 令 : λ 2 = 0 , 则 λ 4 = 0 , J ( λ ) = 0 ; 或 λ 4 = 0 , 则 λ 2 = 1 4 , J ( λ ) = − 1 4 ; \mathcal{J}(\lambda) = 4\lambda_2^2+\frac{1}{2}\lambda_4^2++2\lambda_2\lambda_4 -2\lambda_2 \ \ \Longrightarrow ^{求偏导}\ \left{\begin{matrix} \frac{\partial \mathcal{J}}{\partial \lambda_2} = 8\lambda_2+2\lambda_4-2=0 \ \frac{\partial \mathcal{J}}{\partial \lambda_4} = 2\lambda_2+\lambda_4=0 \end{matrix}\right. \Longrightarrow \left{\begin{matrix} \lambda_2=\frac{1}{2} \ \lambda_4=-1(\le0 \ \ \ \ 不满足s.t.) \end{matrix}\right.\ 再令:\ \lambda_2 = 0,则\lambda_4=0, \mathcal{J}(\lambda) = 0;\ 或\lambda_4 = 0,则\lambda_2=\frac{1}{4}, \mathcal{J}(\lambda) = -\frac{1}{4}; J(λ)=4λ22​+21​λ42​++2λ2​λ4​−2λ2​⟹求偏导{∂λ2​∂J​=8λ2​+2λ4​−2=0∂λ4​∂J​=2λ2​+λ4​=0​⟹{λ2​=21​λ4​=−1(≤0 不满足s.t.)​再令:λ2​=0,则λ4​=0,J(λ)=0;或λ4​=0,则λ2​=41​,J(λ)=−41​;

同理可得:

    1. λ 2 = 0 \lambda_2 = 0 λ2​=0 λ 1 = 0 , λ 4 = 0 J ( λ ) = 0 λ 4 = 0 , λ 1 = 1 J ( λ ) = 1 \lambda_1 = 0,则\lambda_4=0 \mathcal{J}(\lambda) = 0\\ \lambda_4 = 0,则\lambda_1=1 \mathcal{J}(\lambda) =-1 λ1​=0,则λ4​=0J(λ)=0;或λ4​=0,则λ1​=1J(λ)=−1
    1. λ 3 = 0 \lambda_3 = 0 λ3​=0 λ 1 = 0 , λ 2 = 2 13 J ( λ ) = 2 13 λ 2 = 0 , λ 1 = 2 5 J ( λ ) = 2 5 \lambda_1 = 0,则\lambda_2=\frac{2}{13}, \mathcal{J}(\lambda) = -\frac{2}{13};\\ \lambda_2 = 0,则\lambda_1=\frac{2}{5}, \mathcal{J}(\lambda) =-\frac{2}{5}; λ1​=0,则λ2​=132​,J(λ)=−132​;或λ2​=0,则λ1​=52​,J(λ)=−52​;
    1. λ 4 = 0 \lambda_4 = 0 λ4​=0 λ 1 = 0 , λ 2 = 1 4 J ( λ ) = 1 4 λ 2 = 0 , λ 1 = 1 J ( λ ) = 1 \lambda_1 = 0,则\lambda_2=\frac{1}{4}, \mathcal{J}(\lambda) = -\frac{1}{4};\\ \lambda_2 = 0,则\lambda_1=1 \mathcal{J}(\lambda) =-1 λ1​=0,则λ2​=41​,J(λ)=−41​;或λ2​=0,则λ1​=1J(λ)=−1 综上: λ 1 , 2 , 3 , 4 = { 1 , 0 , 1 , 0 } \lambda_{1,2,3,4} =\{1,0,1,0\} λ1,2,3,4​={1,0,1,0} { W = i = 1 N λ i y ( i ) x ( i ) b = y ( j ) i = 1 N λ i y ( i ) ( x ( i ) ) T x ( j ) { W = [ 1 , 1 ] T b = 1 x ( 1 ) + x ( 2 ) 1 = 0 \left\{\begin{matrix} W=\sum_{i=1}^{N} \lambda_{i} y^{(i)} \boldsymbol{x}^{(i)}\\ b=y^{(j)}-\sum_{i=1}^{N} \lambda_{i} y^{(i)}\left(x^{(i)}\right)^{T} x^{(j)} \end{matrix}\right. \Longrightarrow \left\{\begin{matrix} W = [1,1]^T\\ b=-1 \end{matrix}\right. \\\Longrightarrow x^{(1)}+x^{(2)} -1 =0 {W=∑i=1N​λiy(i)x(i)b=y(j)−∑i=1N​λiy(i)(x(i))Tx(j)​⟹{W=[1,1]Tb=−1​⟹x(1)+x(2)−1=0

本文转载自: https://blog.csdn.net/pylittlebrat/article/details/127830682
版权归原作者 ACxz 所有, 如有侵权,请联系我们删除。

“SVM 超平面计算例题”的评论:

还没有评论