0


OpenMV与STM32之间的通信(附源码)

本篇文章旨在记录我电赛期间使用openmv和stm32单片机之间进行串口通信,将openmv识别到的坐标传输给单片机。背景是基于2023年全国大学生电子设计大赛E题:舵机云台追踪识别。

单片机的串口通信原理我便不再详细讲解,下面直接上代码分析。

值得注意的是接线:RX——>TX

** TX——>RX**

** 单片机和OPENMV必须共地**

非常重要!!!!

一、串口通信传输两个数据(x坐标和y坐标)

(一)、 OPENMV串口通信部分

import sensor, image, time,math,pyb
from pyb import UART,LED
import json
import ustruct

sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time = 2000)
sensor.set_auto_gain(False) # must be turned off for color tracking
sensor.set_auto_whitebal(False) # must be turned off for color tracking
red_threshold_01=(10, 100, 127, 32, -43, 67)
clock = time.clock()

uart = UART(3,115200)   #定义串口3变量
uart.init(115200, bits=8, parity=None, stop=1) # init with given parameters

def find_max(blobs):    #定义寻找色块面积最大的函数
    max_size=0
    for blob in blobs:
        if blob.pixels() > max_size:
            max_blob=blob
            max_size = blob.pixels()
    return max_blob

def sending_data(cx,cy,cw,ch):
    global uart;
    #frame=[0x2C,18,cx%0xff,int(cx/0xff),cy%0xff,int(cy/0xff),0x5B];
    #data = bytearray(frame)
    data = ustruct.pack("<bbhhhhb",      #格式为俩个字符俩个短整型(2字节)
                   0x2C,                      #帧头1
                   0x12,                      #帧头2
                   int(cx), # up sample by 4   #数据1
                   int(cy), # up sample by 4    #数据2
                   int(cw), # up sample by 4    #数据1
                   int(ch), # up sample by 4    #数据2
                   0x5B)
    uart.write(data);   #必须要传入一个字节数组

while(True):
    clock.tick()
    img = sensor.snapshot()
    blobs = img.find_blobs([red_threshold_01])
    max_b = find_max(blobs)
    cx=0;cy=0;
    if blobs:
            #如果找到了目标颜色
            cx=max_b[5]
            cy=max_b[6]
            cw=max_b[2]
            ch=max_b[3]
            img.draw_rectangle(max_b[0:4]) # rect
            img.draw_cross(max_b[5], max_b[6]) # cx, cy
            FH = bytearray([0x2C,0x12,cx,cy,cw,ch,0x5B])
            #sending_data(cx,cy,cw,ch)
            uart.write(FH)
            print(cx,cy,cw,ch)

**注意观察下图标注的部分,我不做详细讲解,但是很容易理解: **

接下来请看STM32串口通信部分的代码:

#include "uart.h"
#include "oled.h"
#include "stdio.h"

static u8 Cx=0,Cy=0,Cw=0,Ch=0;

void USART1_Init(void)
{
    //USART1_TX:PA 9   
    //USART1_RX:PA10
    GPIO_InitTypeDef GPIO_InitStructure;     //串口端口配置结构体变量
    USART_InitTypeDef USART_InitStructure;   //串口参数配置结构体变量
    NVIC_InitTypeDef NVIC_InitStructure;     //串口中断配置结构体变量

    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);    
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);   //打开PA端口时钟

    //USART1_TX   PA9
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;                   //PA9
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;           //设定IO口的输出速度为50MHz
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;                //复用推挽输出
    GPIO_Init(GPIOA, &GPIO_InitStructure);                       //初始化PA9
    //USART1_RX      PA10
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;             //PA10
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;  //浮空输入
    GPIO_Init(GPIOA, &GPIO_InitStructure);                 //初始化PA10 

    //USART1 NVIC 配置
    NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
        NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0 ;  //抢占优先级0
        NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;          //子优先级2
        NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;              //IRQ通道使能
        NVIC_Init(&NVIC_InitStructure);                              //根据指定的参数初始化VIC寄存器

    //USART 初始化设置
        USART_InitStructure.USART_BaudRate = 115200;                  //串口波特率为115200
        USART_InitStructure.USART_WordLength = USART_WordLength_8b;   //字长为8位数据格式
        USART_InitStructure.USART_StopBits = USART_StopBits_1;        //一个停止位
        USART_InitStructure.USART_Parity = USART_Parity_No;           //无奇偶校验位
        USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;   //无硬件数据流控制
        USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;                      //收发模式
    USART_Init(USART1, &USART_InitStructure);                     //初始化串口1

    USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); //使能中断
    USART_Cmd(USART1, ENABLE);                     //使能串口1

      //如下语句解决第1个字节无法正确发送出去的问题
      USART_ClearFlag(USART1, USART_FLAG_TC);        //清串口1发送标志
        
}

//USART1 全局中断服务函数
void USART1_IRQHandler(void)             
{
        u8 com_data; 
        u8 i;
        static u8 RxCounter1=0;
        static u16 RxBuffer1[10]={0};
        static u8 RxState = 0;    
        static u8 RxFlag1 = 0;

        if( USART_GetITStatus(USART1,USART_IT_RXNE)!=RESET)         //接收中断  
        {
                USART_ClearITPendingBit(USART1,USART_IT_RXNE);   //清除中断标志
                com_data = USART_ReceiveData(USART1);
            
                if(RxState==0&&com_data==0x2C)  //0x2c帧头
                {
                    RxState=1;
                    RxBuffer1[RxCounter1++]=com_data;OLED_Refresh();
                }
        
                else if(RxState==1&&com_data==0x12)  //0x12帧头
                {
                    RxState=2;
                    RxBuffer1[RxCounter1++]=com_data;
                }
        
                else if(RxState==2)
                {
                    RxBuffer1[RxCounter1++]=com_data;

                    if(RxCounter1>=10||com_data == 0x5B)       //RxBuffer1接受满了,接收数据结束
                    {
                        RxState=3;
                        RxFlag1=1;
                        Cx=RxBuffer1[RxCounter1-5];
                        Cy=RxBuffer1[RxCounter1-4];
                        Cw=RxBuffer1[RxCounter1-3];
                        Ch=RxBuffer1[RxCounter1-2];
                    }
                }
        
                else if(RxState==3)        //检测是否接受到结束标志
                {
                        if(RxBuffer1[RxCounter1-1] == 0x5B)
                        {
                                    USART_ITConfig(USART1,USART_IT_RXNE,DISABLE);//关闭DTSABLE中断
                                    if(RxFlag1)
                                    {
                                    OLED_Refresh();
                                    OLED_ShowNum(0, 0,Cx,3,16,1);
                                    OLED_ShowNum(0,17,Cy,3,16,1);
                                    OLED_ShowNum(0,33,Cw,3,16,1);
                                    OLED_ShowNum(0,49,Ch,3,16,1);
                                    }
                                    RxFlag1 = 0;
                                    RxCounter1 = 0;
                                    RxState = 0;
                                    USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);
                        }
                        else   //接收错误
                        {
                                    RxState = 0;
                                    RxCounter1=0;
                                    for(i=0;i<10;i++)
                                    {
                                            RxBuffer1[i]=0x00;      //将存放数据数组清零
                                    }
                        }
                } 
    
                else   //接收异常
                {
                        RxState = 0;
                        RxCounter1=0;
                        for(i=0;i<10;i++)
                        {
                                RxBuffer1[i]=0x00;      //将存放数据数组清零
                        }
                }

        }
        
}

注意观察下面的图:

二、串口通信传输多个数据(四个点的x、y坐标同时传输给STM32单片机)

(一)OPENMV串口部分

from machine import Pin
import sensor, image, time, pyb
#import seekfree
from pyb import UART

# 初始化TFT180屏幕
#lcd = seekfree.LCD180(3)

# 初始化摄像头
sensor.reset()
sensor.set_pixformat(sensor.RGB565) # 设置图像色彩格式为RGB565格式
sensor.set_framesize(sensor.QQVGA)  # 设置图像大小为160*120
sensor.set_auto_whitebal(True)      # 设置自动白平衡
sensor.set_brightness(3000)         # 设置亮度为3000
sensor.skip_frames(time = 20)       # 跳过帧
uart = UART(3, 115200,timeout_char=3000) #配置串口
clock = time.clock()

def sending_data(cx,cy,cw,ch):
    global uart;
    data = ustruct.pack("<bbhhb",      #格式为俩个字符俩个短整型(2字节)
                   0x2C,                      #帧头1
                   0x12,                      #帧头2
                   int (cx1), # up sample by 4    #数据26
                   int (cy1),
                   int (cx2), # up sample by 4    #数据26
                   int (cy2),
                   int (cx3), # up sample by 4    #数据26
                   int (cy3),
                   int (cx4), # up sample by 4    #数据26
                   int (cy4),
                   0x5B)
    uart.write(data);   #必须要传入一个字节数组

while(True):
    clock.tick()
    img = sensor.snapshot()

# -----矩形框部分-----
    # 在图像中寻找矩形
    for r in img.find_rects(threshold = 10000):
        # 判断矩形边长是否符合要求
        if r.w() > 20 and r.h() > 20:
            # 在屏幕上框出矩形
            img.draw_rectangle(r.rect(), color = (255, 0, 0), scale = 4)
            # 获取矩形角点位置
            corner = r.corners()
            # 在屏幕上圈出矩形角点
            img.draw_circle(corner[0][0], corner[0][1], 5, color = (0, 0, 255), thickness = 2, fill = False)
            img.draw_circle(corner[1][0], corner[1][1], 5, color = (0, 0, 255), thickness = 2, fill = False)
            img.draw_circle(corner[2][0], corner[2][1], 5, color = (0, 0, 255), thickness = 2, fill = False)
            img.draw_circle(corner[3][0], corner[3][1], 5, color = (0, 0, 255), thickness = 2, fill = False)

        # 打印四个角点坐标, 角点1的数组是corner[0], 坐标就是(corner[0][0],corner[0][1])
        # 角点检测输出的角点排序每次不一定一致,矩形左上的角点有可能是corner0,1,2,3其中一个
            corner1_str = f"corner1 = ({corner[0][0]},{corner[0][1]})"
            corner2_str = f"corner2 = ({corner[1][0]},{corner[1][1]})"
            corner3_str = f"corner3 = ({corner[2][0]},{corner[2][1]})"
            corner4_str = f"corner4 = ({corner[3][0]},{corner[3][1]})"
        print(corner1_str + "\n" + corner2_str + "\n" + corner3_str + "\n" + corner4_str)
    # 显示到屏幕上,此部分会降低帧率
    #lcd.show_image(img, 160, 120, 0, 0, zoom=0)  #屏幕显示

    #串口通信传输的数据
        cx1=(int)(corner[0][0]*10)
        cy1=(int)(corner[0][1]*10)

        cx2=(int)(corner[1][0]*10)
        cy2=(int)(corner[1][1]*10)

        cx3=(int)(corner[2][0]*10)
        cy3=(int)(corner[2][1]*10)

        cx4=(int)(corner[3][0]*10)
        cy4=(int)(corner[3][1]*10)

        FH=bytearray([0x2C,0x12,cx1,cy1,cx2,cy2,cx3,cy3,cx4,cy4,0x5B])

        uart.write(FH)

        cx1=0
        cy1=0

        cx2=0
        cy2=0

        cx3=0
        cy3=0

        cx4=0
        cy4=0

    # 打印帧率
    print(clock.fps())

下面请观察这幅代码截图:

(二)、STM32串口通信部分

#include "stm32f10x.h"                  // Device header
#include <stdio.h>
#include <stdarg.h>
#include "OLED.h"
#include "LED.h"
#include "Serial.h"

uint8_t Serial_RxData;
uint8_t Serial_RxFlag;
static int16_t Cx1=0,Cy1=0,Cx2=0,Cy2=0,Cx3=0,Cy3=0,Cx4=0,Cy4=0; 

int Cx5[16];//用于存放分段求的坐标值
int Cy5[16];
//static u8 RxFlag1 = 0;//串口中断接收标志位

extern float Ang1,Ang2,AngFlag;
extern float Angle1,Angle2;

int avel_X1 ;
int avel_X2 ;
int avel_X3 ;
int avel_X4 ;

int avel_Y1 ;
int avel_Y2 ;
int avel_Y3 ;
int avel_Y4 ;

void Serial_Init(void)
{
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
    
    //TX
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    
    //RX
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    
    USART_InitTypeDef USART_InitStructure;
    USART_InitStructure.USART_BaudRate = 115200;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
    USART_InitStructure.USART_Parity = USART_Parity_No;
    USART_InitStructure.USART_StopBits = USART_StopBits_1;
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;
    USART_Init(USART3, &USART_InitStructure);
    
    USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
    
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
    
    NVIC_InitTypeDef NVIC_InitStructure;
    NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
    NVIC_Init(&NVIC_InitStructure);
    
    USART_Cmd(USART3, ENABLE);
}

void Serial_SendByte(uint8_t Byte)
{
    USART_SendData(USART3, Byte);
    while (USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
}

void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
    uint16_t i;
    for (i = 0; i < Length; i ++)
    {
        Serial_SendByte(Array[i]);
    }
}

void Serial_SendString(char *String)
{
    uint8_t i;
    for (i = 0; String[i] != '\0'; i ++)
    {
        Serial_SendByte(String[i]);
    }
}

uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
    uint32_t Result = 1;
    while (Y --)
    {
        Result *= X;
    }
    return Result;
}

void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
    uint8_t i;
    for (i = 0; i < Length; i ++)
    {
        Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');
    }
}

int fputc(int ch, FILE *f)
{
    Serial_SendByte(ch);
    return ch;
}

void Serial_Printf(char *format, ...)
{
    char String[100];
    va_list arg;
    va_start(arg, format);
    vsprintf(String, format, arg);
    va_end(arg);
    Serial_SendString(String);
}
//USART3 全局中断服务函数
void USART3_IRQHandler(void)             
{
        int com_data; 
        u8 i;
        u8 Jieshou = 1;
        
        static u8 RxCounter1=0;
        static int RxBuffer1[16]={0};
        static u8 RxState = 0;    
        static u8 RxFlag1 = 0;//串口中断接收标志位,已被移除至函数体外作为全局变量

        if( USART_GetITStatus(USART3,USART_IT_RXNE)!=RESET && Jieshou == 1)         //接收中断  
        {
//            OLED_ShowSignedNum(1,1,520,4);
                USART_ClearITPendingBit(USART3,USART_IT_RXNE);   //清除中断标志
                com_data = USART_ReceiveData(USART3);
            if(Jieshou == 1)
            {
        
                if(RxState==0&&com_data==0x2C)  //0x2c帧头
                {
                    RxBuffer1[RxCounter1++]=com_data;
                    RxState=1;
                }
        
                else if(RxState==1&&com_data==0x12)  //0x12帧头
                {
                    RxBuffer1[RxCounter1++]=com_data;
                    RxState=2;
                }            
                else if(RxState==2)
                {
                    RxBuffer1[RxCounter1++]=com_data;

                    if(RxCounter1>=14||com_data == 0x5B)       //RxBuffer1接受满了,接收数据结束
                    {
                        RxState=3;
                        RxFlag1=1;
                        Jieshou = 2;
                        
                        Cx1=RxBuffer1[RxCounter1-9];
                        Cy1=RxBuffer1[RxCounter1-8];
                        
                        Cx2=RxBuffer1[RxCounter1-7];
                        Cy2=RxBuffer1[RxCounter1-6];
                        
                        Cx3=RxBuffer1[RxCounter1-5];
                        Cy3=RxBuffer1[RxCounter1-4];
                        
                        Cx4=RxBuffer1[RxCounter1-3];
                        Cy4=RxBuffer1[RxCounter1-2];
                        
                        OLED_ShowSignedNum(1,1,Cx1,4);
                        OLED_ShowSignedNum(2,1,Cy1,4);
                        OLED_ShowSignedNum(3,1,Cx2,4);
                        OLED_ShowSignedNum(4,1,Cy2,4);
                        
                        OLED_ShowSignedNum(1,7,Cx3,4);
                        OLED_ShowSignedNum(2,7,Cy3,4);
                        OLED_ShowSignedNum(3,7,Cx4,4);
                        OLED_ShowSignedNum(4,7,Cy4,4);
                        
                    }
                }
            }
                else if(RxState==3)        //检测是否接受到结束标志
                {
                    if(RxBuffer1[RxCounter1-1] == 0x5B)
                    {
                        USART_ITConfig(USART3,USART_IT_RXNE,DISABLE);//关闭DTSABLE中断
                        if(RxFlag1)
                        {    
                            
                            AngFlag=0;
                            HuanRaoZuoBiao();
//                                        
//                            OLED_ShowSignedNum(1,1,Cx1,4);

//                            OLED_ShowSignedNum(2,1,Cx2,4);
//                            OLED_ShowSignedNum(3,1,avel_X1,4);
//                            OLED_ShowSignedNum(4,1,Cx5[0],4);

                            AngFlag=1;
                            RxFlag1 = 0;
                            RxCounter1 = 0;
                            RxState = 0;                                    
                        }
                        USART_ITConfig(USART3,USART_IT_RXNE,ENABLE);                                    
                    }
                    else   //接收错误
                    {
                                RxState = 0;
                                RxCounter1=0;
                                for(i=0;i<10;i++)
                                {
                                        RxBuffer1[i]=0x00;      //将存放数据数组清零
                                }
                    }
                } 
    
                else   //接收异常
                {
                        RxState = 0;
                        RxCounter1=0;
                        for(i=0;i<10;i++)
                        {
                                RxBuffer1[i]=0x00;      //将存放数据数组清零
                            
                        }
                }
            
        }
    }

** 注意观察下面这副代码截图:**

以上便是我对电赛期间OPENMV与单片机之间实现串口通信的代码实现。学者若有疑问可以私聊我。收到后我会及时回复。

链接:https://pan.baidu.com/s/1sOCuYl7288Ef0l0J41k9hg?pwd=zxf1
提取码:zxf1
--来自百度网盘超级会员V4的分享


本文转载自: https://blog.csdn.net/m0_73931287/article/details/132701860
版权归原作者 小小_扫地僧 所有, 如有侵权,请联系我们删除。

“OpenMV与STM32之间的通信(附源码)”的评论:

还没有评论