AOP原理及流程详解
一、AOP结构介绍
我们先看个简单的AOP例子:
@Aspect
@Component
public class AopAspect {
@Pointcut("execution(* com.example.spkie.AopTest.AopTest.test())")
public void aopTest() {
}
@Before("aopTest()")
public void doBefore(JoinPoint joinPoint){
System.out.println("前置通知");
}
@Around("aopTest()")
public Object aroundExec(ProceedingJoinPoint joinPoint) throws Throwable {
System.out.println("环绕前置处理");
Object proceed = joinPoint.proceed();
System.out.println("环绕后置处理");
return proceed;
}
@AfterReturning(value = "aopTest()")
public void doAfterReturning(){
System.out.println("doAfterReturning后置通知");
}
@After("aopTest()")
public void doAfter(){
System.out.println("doAfter最终通知");
}
@AfterThrowing(value = "aopTest()",throwing = "e")
public void doThrow(Exception e){
System.out.println("异常通知:"+e.getMessage());
}
}
结果:
我们来细数一下有哪些要素?
- @Aspect:切面类,告诉Spring我这个类是个切面,里面有特殊处理方法
- @Pointcut:切点,告诉Spring我要针对什么
- @Before、@Around、@AfterReturning、@After、@AfterThrowing:通知,告诉Spring针对后要做什么处理
要素就这些吧,**@Aspect**就不说了就是个标识,主要是切点和处理方法吧
@Pointcut
这个注解值的格式是:表达标签 (表达式格式),用白话说就是用了一种表达式来代表我要针对什么来进行特殊处理,表达标签有以下几种,表达式格式各不太一样,这里就不一一介绍了
- execution:用于匹配方法执行的连接点
- within:用于匹配指定类型内的方法执行
- this:用于匹配当前AOP代理对象类型的执行方法;注意是AOP代理对象的类型匹配,这样就可能包括引入接口也类型匹配
- target:用于匹配当前目标对象类型的执行方法;注意是目标对象的类型匹配,这样就不包括引入接口也类型匹配
- args:用于匹配当前执行的方法传入的参数为指定类型的执行方法
- @within:用于匹配所以持有指定注解类型内的方法
- @target:用于匹配当前目标对象类型的执行方法,其中目标对象持有指定的注解
- @args:用于匹配当前执行的方法传入的参数持有指定注解的执行
- @annotation:用于匹配当前执行方法持有指定注解的方法
- bean:Spring AOP扩展的,AspectJ没有对于指示符,用于匹配特定名称的Bean对象的执行方法
通知
我们上述看到了有五种通知注解,分别表示如下,表示有五种特殊处理方式:
- @Before: 前置通知,在目标方法执行前执行
- @Around: 环绕通知,可以在目标方法前、后进行处理,还可以修改目标方法返回值
- @AfterReturning: 后置通知,在目标方法后执行(发生异常便不会执行)
- @After: 最终通知,不管异常还是正常一定都会执行
- @AfterThrowing:异常通知,在目标方法发生异常后执行
原理
一提起AOP可能第一反应就是动态代理,但是真的就只有动态代理这么简单吗?我们看一个动态代理的例子(以JDK动态代理为例):
@Override
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
Object invoke=null;
try{
System.out.println("前置通知:目标方法执行前执行");
invoke = method.invoke(object, args);
System.out.println("后置通知:目标方法执行后执行");
}catch (Exception e){
System.out.println("异常通知:异常才会执行");
}finally {
System.out.println("最终通知:一定会执行");
}
return invoke;
}
这乍一看好像就是这个道理啊,好像全满足了呀,真满足吗?环绕通知要怎么做?通知有多个,有多个处理方法怎么做?总不可能一直往这里面塞吧,还有环绕通知需要在invoke方法外面再套一层吧,有多个的话无限套娃?
那要怎么做?注意看这是不是都是串行执行的,串行执行的拦截处理方法是什么?拦截器链!!
流程如下图所示:
注意看所有通知都是多个:
- 无环绕,无异常的情况下:所有前置通知→目标方法→所有后置通知→所有最终通知→返回
- 无环绕,有异常的情况下:所有前置通知→目标方法→所有异常通知→所有最终通知→返回(这里注意前置、目标、后置任何一个异常都会到异常通知)
- 有环绕的情况下:先执行环绕前置→再执行链条→然后环绕后置(如下图)
多个环绕会怎样?注意环绕通知本身就是链条的里面的,只不过在最前面执行,多个环绕就会像这样:
好了重点来了,我们知道原理了动态代理+拦截器链,我们需要知道Spring怎么帮我们组装的?
- 动态代理很简单就两种方式:JDK和Cglib
- 拦截器链:是不是需要把上述切面里面的方法全提取出来封装好,然后最后组装成链条
- 连接点:拦截器通过什么连接到一起?需要相同的连接点吧
接下来我们就去验证一下
连接点
在Spring里面连接点是Joinpoint这个接口:
如上图可见就两个实现类:
ReflectiveMethodInvocation:提供给JDK动态代理方式使用
CglibMethodInvocation:提供给Cglib动态代理方式使用
先不管有啥用,,记得先
拦截器
既然知道是拦截器链了,那每个通知方法应该都有对应的拦截器,我们去看看(只看invoke方法哈):
前置通知拦截器MethodBeforeAdviceInterceptor:
public class MethodBeforeAdviceInterceptor implements MethodInterceptor, BeforeAdvice, Serializable {
private final MethodBeforeAdvice advice;
public MethodBeforeAdviceInterceptor(MethodBeforeAdvice advice) {
Assert.notNull(advice, "Advice must not be null");
this.advice = advice;
}
@Nullable
public Object invoke(MethodInvocation mi) throws Throwable {
//前置处理 这个就是利用反射执行我们定义的前置方法
this.advice.before(mi.getMethod(), mi.getArguments(), mi.getThis());
// 调用链条
return mi.proceed();
}
}
后置通知拦截器AfterReturningAdviceInterceptor:
public class AfterReturningAdviceInterceptor implements MethodInterceptor, AfterAdvice, Serializable {
private final AfterReturningAdvice advice;
public AfterReturningAdviceInterceptor(AfterReturningAdvice advice) {
Assert.notNull(advice, "Advice must not be null");
this.advice = advice;
}
@Nullable
public Object invoke(MethodInvocation mi) throws Throwable {
//先执行链条
Object retVal = mi.proceed();
// 后利用反射执行我们定义的后置通知方法
this.advice.afterReturning(retVal, mi.getMethod(), mi.getArguments(), mi.getThis());
return retVal;
}
}
异常通知拦截器ThrowsAdviceInterceptor :
public class ThrowsAdviceInterceptor implements MethodInterceptor, AfterAdvice {
// 省略............
@Nullable
public Object invoke(MethodInvocation mi) throws Throwable {
try {
// 这个就是链条
return mi.proceed();
} catch (Throwable var4) {
// 链条报错了 就异常处理(还需要判断是不是需要处理的异常)
// 异常通知可以指定需要处理的异常
Method handlerMethod = this.getExceptionHandler(var4);
if (handlerMethod != null) {
this.invokeHandlerMethod(mi, var4, handlerMethod);
}
throw var4;
}
}
// 省略...............
}
最终通知AspectJAfterAdvice :
public class AspectJAfterAdvice extends AbstractAspectJAdvice implements MethodInterceptor, AfterAdvice, Serializable {
public AspectJAfterAdvice(Method aspectJBeforeAdviceMethod, AspectJExpressionPointcut pointcut, AspectInstanceFactory aif) {
super(aspectJBeforeAdviceMethod, pointcut, aif);
}
@Nullable
public Object invoke(MethodInvocation mi) throws Throwable {
Object var2;
try {
// 先执行链条
var2 = mi.proceed();
} finally {
//最终执行
this.invokeAdviceMethod(this.getJoinPointMatch(), (Object)null, (Throwable)null);
}
return var2;
}
}
环绕通知AspectJAroundAdvice :
public class AspectJAroundAdvice extends AbstractAspectJAdvice implements MethodInterceptor, Serializable {
public AspectJAroundAdvice(Method aspectJAroundAdviceMethod, AspectJExpressionPointcut pointcut, AspectInstanceFactory aif) {
super(aspectJAroundAdviceMethod, pointcut, aif);
}
@Nullable
public Object invoke(MethodInvocation mi) throws Throwable {
if (!(mi instanceof ProxyMethodInvocation)) {
throw new IllegalStateException("MethodInvocation is not a Spring ProxyMethodInvocation: " + mi);
} else {
ProxyMethodInvocation pmi = (ProxyMethodInvocation)mi;
ProceedingJoinPoint pjp = this.lazyGetProceedingJoinPoint(pmi);
JoinPointMatch jpm = this.getJoinPointMatch(pmi);
// 这个就是去执行我们 自己写的环绕通知方法
// 所以环绕通知方法一定会有个参数嘛 joinPoint.proceed()就是执行链条
return this.invokeAdviceMethod(pjp, jpm, (Object)null, (Throwable)null);
}
}
protected ProceedingJoinPoint lazyGetProceedingJoinPoint(ProxyMethodInvocation rmi) {
return new MethodInvocationProceedingJoinPoint(rmi);
}
}
以上就是关于通知链条里面所有最后会执行的方法,可以看到共同点就是invoke方法的传参MethodInvocation ,这不就是我们之前说的连接点嘛,当然还有很多内置的其他拦截器,但这都跟我们AOP拦截器没关系
以上基础概念相信大家都懂了,接下来我们看看Spring是怎么代理一个Bean的,是怎么为这个Bean组装这些拦截器的
二、Bean介入点
这AOP代理到底是在Bean生成流程中哪个地方介入进来为我们生成代理对象的咧?
从AOP配置加载点一看便知,开启AOP的配置注解是 @EnableAspectJAutoProxy(现在已经默认开启了,不需要加注解也行,配置类是AopAutoConfiguration)
EnableAspectJAutoProxy
@EnableAspectJAutoProxy注解内部导入了一个类AspectJAutoProxyRegistrar
AspectJAutoProxyRegistrar
这个类实现了ImportBeanDefinitionRegistrar接口,这个接口之前说过了,可以注册BeanDefination,所以我们要看看注册的这个是什么?干了什么?
沿着那个方法一路往下,发现注册了AnnotationAwareAspectJAutoProxyCreator
AnnotationAwareAspectJAutoProxyCreator
这个类可谓是最重要的类了,从下方的类图上看,它实现了很多接口,还有我们非常熟悉的后置处理器,在这里面主要实现了4个方法:
- setBeanFactory:实例化后,初始化前调用
- getEarlyBeanReference:和三级缓存有关,存在循环依赖里面会调用
- postProcessBeforeInstantiation:实例化前执行
- postProcessAfterInitialization:初始化后执行
别看有4个方法,其实下面三个方法内部都会调用一样的方法,只是需要注意在Bean生成流程中的介入点
我们先看一下共同方法是哪个,这个类的顶级父类是AbstractAutoProxyCreator,去看看
AbstractAutoProxyCreator
实例前执行
postProcessBeforeInstantiation()
实例前执行,主要是判断代理目标对象是否已经存在了,存在了就走getAdvicesAndAdvisorsForBean方法,然后调用createProxy()方法创建代理对象
Object cacheKey = this.getCacheKey(beanClass, beanName);
if (!StringUtils.hasLength(beanName) || !this.targetSourcedBeans.contains(beanName)) {
if (this.advisedBeans.containsKey(cacheKey)) {
return null;
}
if (this.isInfrastructureClass(beanClass) || this.shouldSkip(beanClass, beanName)) {
this.advisedBeans.put(cacheKey, Boolean.FALSE);
return null;
}
}
// 判断代理目标对象是否已经存在了 存在了就进入代理流程
TargetSource targetSource = this.getCustomTargetSource(beanClass, beanName);
if (targetSource != null) {
if (StringUtils.hasLength(beanName)) {
this.targetSourcedBeans.add(beanName);
}
Object[] specificInterceptors = this.getAdvicesAndAdvisorsForBean(beanClass, beanName, targetSource);
// 创建动态代理对象
Object proxy = this.createProxy(beanClass, beanName, specificInterceptors, targetSource);
this.proxyTypes.put(cacheKey, proxy.getClass());
return proxy;
} else {
return null;
}
初始化后执行
postProcessAfterInitialization
初始化后执行,会调用wrapIfNecessary()方法
//该bean初始化完毕之后,回调该方法判断该bean是否需要被代理
public Object postProcessAfterInitialization(@Nullable Object bean, String beanName) {
if (bean != null) {
Object cacheKey = this.getCacheKey(bean.getClass(), beanName);
//如果该bean未执行过AOP,则进行封装;如果执行过,则不再进行封装
if (this.earlyProxyReferences.remove(cacheKey) != bean) {
return this.wrapIfNecessary(bean, beanName, cacheKey);
}
}
return bean;
}
wrapIfNecessary()方法也会调用getAdvicesAndAdvisorsForBean方法来获取对应的通知处理,如果没获取到通知处理方法说明不需要代理,获取到了就要创建代理对象了createProxy()
注意: 这里的通知处理就是切面里面的通知方法,getAdvicesAndAdvisorsForBean就是获取所有的切面类里面的切点及通知方法与Bean来匹配,匹配上了说明这个Bean要被代理,同时会封装匹配的切点对应的所有通知方法返回
protected Object wrapIfNecessary(Object bean, String beanName, Object cacheKey) {
if (StringUtils.hasLength(beanName) && this.targetSourcedBeans.contains(beanName)) {
return bean;
} else if (Boolean.FALSE.equals(this.advisedBeans.get(cacheKey))) {
return bean;
} else if (!this.isInfrastructureClass(bean.getClass()) && !this.shouldSkip(bean.getClass(), beanName)) {
// 获取该bean的所有的通知处理
Object[] specificInterceptors = this.getAdvicesAndAdvisorsForBean(bean.getClass(), beanName, (TargetSource)null);
// 获取的通知处理不为空 说明要代理
if (specificInterceptors != DO_NOT_PROXY) {
this.advisedBeans.put(cacheKey, Boolean.TRUE);
// 创建代理
Object proxy = this.createProxy(bean.getClass(), beanName, specificInterceptors, new SingletonTargetSource(bean));
this.proxyTypes.put(cacheKey, proxy.getClass());
return proxy;
} else {
// 为空就不需要创建代理了 直接返回Bean
this.advisedBeans.put(cacheKey, Boolean.FALSE);
return bean;
}
} else {
this.advisedBeans.put(cacheKey, Boolean.FALSE);
return bean;
}
}
循环依赖会调用
getEarlyBeanReference
三级缓存,存在循环依赖则会调用,这里put进去代表已经生成代理了,所以后续初始化后调用的时候会get判断一次,这个也会调用wrapIfNecessary() 方法
public Object getEarlyBeanReference(Object bean, String beanName) {
Object cacheKey = this.getCacheKey(bean.getClass(), beanName);
this.earlyProxyReferences.put(cacheKey, bean);
return this.wrapIfNecessary(bean, beanName, cacheKey);
}
总结
所以会在Bean实例化前、循环依赖、初始化后介入处理,当然只会处理一次,最终都会调用getAdvicesAndAdvisorsForBean方法来对Bean进行切点匹配,匹配上了就调用createProxy方法生成代理对象然后返回
三、处理切面
AbstractAdvisorAutoProxyCreator.getAdvicesAndAdvisorsForBean()
会先获取所有的切面其下的通知方法,然后根据切点表达式去和这个Bean对象匹配,将匹配成功的通知方法返回,这就说明该Bean需要被代理,匹配成功的通知方法排序后就是需要执行的方法调用链
@Nullable
protected Object[] getAdvicesAndAdvisorsForBean(Class<?> beanClass, String beanName, @Nullable TargetSource targetSource) {
// 获取所有切面其下的切面通知方法
List<Advisor> advisors = this.findEligibleAdvisors(beanClass, beanName);
// 为空返回空数组 不为空转成数组返回
return advisors.isEmpty() ? DO_NOT_PROXY : advisors.toArray();
}
// 获取所有切面及其下的切面通知方法
protected List<Advisor> findEligibleAdvisors(Class<?> beanClass, String beanName) {
// 获取所有切面及其下的切面通知方法
List<Advisor> candidateAdvisors = this.findCandidateAdvisors();
// 从中根据切点筛选出符合Bean的通知方法
List<Advisor> eligibleAdvisors = this.findAdvisorsThatCanApply(candidateAdvisors, beanClass, beanName);
this.extendAdvisors(eligibleAdvisors);
if (!eligibleAdvisors.isEmpty()) {
eligibleAdvisors = this.sortAdvisors(eligibleAdvisors);
}
return eligibleAdvisors;
}
获取所有切面其下通知方法
获取切面
AnnotationAwareAspectJAutoProxyCreator.findCandidateAdvisors
有个父类的方法是获取一些实现了Advisor接口的Bean,我们重点关注被@Aspect注解标识的Bean的处理
protected List<Advisor> findCandidateAdvisors() {
// 获取所有实现了Advisor接口的Bean 有些内置的比如事务
List<Advisor> advisors = super.findCandidateAdvisors();
if (this.aspectJAdvisorsBuilder != null) {
// 获取被注解@Aspect标识的Bean 以及其下的切点和通知方法
advisors.addAll(this.aspectJAdvisorsBuilder.buildAspectJAdvisors());
}
return advisors;
}
BeanFactoryAspectJAdvisorsBuilder.buildAspectJAdvisors
会遍历所有的Bean找到其中被注解 @Aspect 标识的,然后去处理其下的切点和通知方法
public List<Advisor> buildAspectJAdvisors() {
List<String> aspectNames = this.aspectBeanNames;
if (aspectNames == null) {
synchronized(this) {
aspectNames = this.aspectBeanNames;
if (aspectNames == null) {
List<Advisor> advisors = new ArrayList();
List<String> aspectNames = new ArrayList();
String[] beanNames = BeanFactoryUtils.beanNamesForTypeIncludingAncestors(this.beanFactory, Object.class, true, false);
String[] var18 = beanNames;
int var19 = beanNames.length;
// 遍历所有的Bean
for(int var7 = 0; var7 < var19; ++var7) {
String beanName = var18[var7];
if (this.isEligibleBean(beanName)) {
Class<?> beanType = this.beanFactory.getType(beanName, false);
// 判断是否被@Aspect注解标识 标示的就需要去处理其下的切点和通知方法
if (beanType != null && this.advisorFactory.isAspect(beanType)) {
aspectNames.add(beanName);
AspectMetadata amd = new AspectMetadata(beanType, beanName);
if (amd.getAjType().getPerClause().getKind() == PerClauseKind.SINGLETON) {
MetadataAwareAspectInstanceFactory factory = new BeanFactoryAspectInstanceFactory(this.beanFactory, beanName);
// 去获取其下的切点和通知方法
List<Advisor> classAdvisors = this.advisorFactory.getAdvisors(factory);
if (this.beanFactory.isSingleton(beanName)) {
this.advisorsCache.put(beanName, classAdvisors);
} else {
this.aspectFactoryCache.put(beanName, factory);
}
advisors.addAll(classAdvisors);
}
// 省略..............
}
}
}
this.aspectBeanNames = aspectNames;
return advisors;
}
}
}
// 省略..............
}
获取切面下的通知方法
ReflectiveAspectJAdvisorFactory.getAdvisors
遍历切面下的所有方法,去找方法上是否有相应的注解,如果有则需要封装处理
public List<Advisor> getAdvisors(MetadataAwareAspectInstanceFactory aspectInstanceFactory) {
Class<?> aspectClass = aspectInstanceFactory.getAspectMetadata().getAspectClass();
String aspectName = aspectInstanceFactory.getAspectMetadata().getAspectName();
this.validate(aspectClass);
MetadataAwareAspectInstanceFactory lazySingletonAspectInstanceFactory = new LazySingletonAspectInstanceFactoryDecorator(aspectInstanceFactory);
List<Advisor> advisors = new ArrayList();
// 获取切面下的所有方法
Iterator var6 = this.getAdvisorMethods(aspectClass).iterator();
// 遍历所有方法
while(var6.hasNext()) {
Method method = (Method)var6.next();
// 判断该方法是否被相关注解标识 标识的方法处理后封装返回
Advisor advisor = this.getAdvisor(method, lazySingletonAspectInstanceFactory, 0, aspectName);
if (advisor != null) {
advisors.add(advisor);
}
}
// 省略......
return advisors;
}
ReflectiveAspectJAdvisorFactory.getAdvisor
遍历我需要的注解,在方法上找注解是否存在,存在的就需要封装处理
public Advisor getAdvisor(Method candidateAdviceMethod, MetadataAwareAspectInstanceFactory aspectInstanceFactory, int declarationOrderInAspect, String aspectName) {
this.validate(aspectInstanceFactory.getAspectMetadata().getAspectClass());
// 获取方法上的注解 实际就是遍历需要的注解 一个个找
AspectJExpressionPointcut expressionPointcut = this.getPointcut(candidateAdviceMethod, aspectInstanceFactory.getAspectMetadata().getAspectClass());
// 没有对应的注解就返回null 有对应的注解就需要处理封装后返回
return expressionPointcut == null ? null : new InstantiationModelAwarePointcutAdvisorImpl(expressionPointcut, candidateAdviceMethod, this, aspectInstanceFactory, declarationOrderInAspect, aspectName);
}
private AspectJExpressionPointcut getPointcut(Method candidateAdviceMethod, Class<?> candidateAspectClass) {
// 看下面方法
AspectJAnnotation<?> aspectJAnnotation = AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(candidateAdviceMethod);
if (aspectJAnnotation == null) {
return null;
} else {
// 找到了就设置一下切点上的表达式
AspectJExpressionPointcut ajexp = new AspectJExpressionPointcut(candidateAspectClass, new String[0], new Class[0]);
ajexp.setExpression(aspectJAnnotation.getPointcutExpression());
if (this.beanFactory != null) {
ajexp.setBeanFactory(this.beanFactory);
}
return ajexp;
}
}
// ASPECTJ_ANNOTATION_CLASSES = new Class[]{Pointcut.class, Around.class, Before.class, After.class, AfterReturning.class, AfterThrowing.class};
protected static AbstractAspectJAdvisorFactory.AspectJAnnotation<?> findAspectJAnnotationOnMethod(Method method) {
// 遍历需要的注解,一个一个找
Class[] var1 = ASPECTJ_ANNOTATION_CLASSES;
int var2 = var1.length;
for(int var3 = 0; var3 < var2; ++var3) {
Class<?> clazz = var1[var3];
AbstractAspectJAdvisorFactory.AspectJAnnotation<?> foundAnnotation = findAnnotation(method, clazz);
if (foundAnnotation != null) {
return foundAnnotation;
}
}
return null;
}
通知方法的封装
InstantiationModelAwarePointcutAdvisorImpl
这个在构造里面就会对通知方法进行处理封装
public InstantiationModelAwarePointcutAdvisorImpl(AspectJExpressionPointcut declaredPointcut, Method aspectJAdviceMethod, AspectJAdvisorFactory aspectJAdvisorFactory, MetadataAwareAspectInstanceFactory aspectInstanceFactory, int declarationOrder, String aspectName) {
this.declaredPointcut = declaredPointcut;
this.declaringClass = aspectJAdviceMethod.getDeclaringClass();
this.methodName = aspectJAdviceMethod.getName();
this.parameterTypes = aspectJAdviceMethod.getParameterTypes();
this.aspectJAdviceMethod = aspectJAdviceMethod;
this.aspectJAdvisorFactory = aspectJAdvisorFactory;
this.aspectInstanceFactory = aspectInstanceFactory;
this.declarationOrder = declarationOrder;
this.aspectName = aspectName;
if (aspectInstanceFactory.getAspectMetadata().isLazilyInstantiated()) {
Pointcut preInstantiationPointcut = Pointcuts.union(aspectInstanceFactory.getAspectMetadata().getPerClausePointcut(), this.declaredPointcut);
this.pointcut = new InstantiationModelAwarePointcutAdvisorImpl.PerTargetInstantiationModelPointcut(this.declaredPointcut, preInstantiationPointcut, aspectInstanceFactory);
this.lazy = true;
} else {
this.pointcut = this.declaredPointcut;
this.lazy = false;
// 封装通知方法
this.instantiatedAdvice = this.instantiateAdvice(this.declaredPointcut);
}
}
ReflectiveAspectJAdvisorFactory.getAdvice
所有的通知方法都会被封装成对应处理类
public Advice getAdvice(Method candidateAdviceMethod, AspectJExpressionPointcut expressionPointcut, MetadataAwareAspectInstanceFactory aspectInstanceFactory, int declarationOrder, String aspectName) {
Class<?> candidateAspectClass = aspectInstanceFactory.getAspectMetadata().getAspectClass();
this.validate(candidateAspectClass);
AspectJAnnotation<?> aspectJAnnotation = AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(candidateAdviceMethod);
if (aspectJAnnotation == null) {
return null;
} else if (!this.isAspect(candidateAspectClass)) {
throw new AopConfigException("Advice must be declared inside an aspect type: Offending method '" + candidateAdviceMethod + "' in class [" + candidateAspectClass.getName() + "]");
} else {
if (this.logger.isDebugEnabled()) {
this.logger.debug("Found AspectJ method: " + candidateAdviceMethod);
}
Object springAdvice;
// 根据方法上的注解类型 封装对应的通知方法处理类
switch(aspectJAnnotation.getAnnotationType()) {
case AtPointcut:
if (this.logger.isDebugEnabled()) {
this.logger.debug("Processing pointcut '" + candidateAdviceMethod.getName() + "'");
}
return null;
case AtAround:
springAdvice = new AspectJAroundAdvice(candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);
break;
case AtBefore:
springAdvice = new AspectJMethodBeforeAdvice(candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);
break;
case AtAfter:
springAdvice = new AspectJAfterAdvice(candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);
break;
case AtAfterReturning:
springAdvice = new AspectJAfterReturningAdvice(candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);
AfterReturning afterReturningAnnotation = (AfterReturning)aspectJAnnotation.getAnnotation();
if (StringUtils.hasText(afterReturningAnnotation.returning())) {
((AbstractAspectJAdvice)springAdvice).setReturningName(afterReturningAnnotation.returning());
}
break;
case AtAfterThrowing:
springAdvice = new AspectJAfterThrowingAdvice(candidateAdviceMethod, expressionPointcut, aspectInstanceFactory);
AfterThrowing afterThrowingAnnotation = (AfterThrowing)aspectJAnnotation.getAnnotation();
if (StringUtils.hasText(afterThrowingAnnotation.throwing())) {
((AbstractAspectJAdvice)springAdvice).setThrowingName(afterThrowingAnnotation.throwing());
}
break;
default:
throw new UnsupportedOperationException("Unsupported advice type on method: " + candidateAdviceMethod);
}
((AbstractAspectJAdvice)springAdvice).setAspectName(aspectName);
((AbstractAspectJAdvice)springAdvice).setDeclarationOrder(declarationOrder);
String[] argNames = this.parameterNameDiscoverer.getParameterNames(candidateAdviceMethod);
if (argNames != null) {
((AbstractAspectJAdvice)springAdvice).setArgumentNamesFromStringArray(argNames);
}
((AbstractAspectJAdvice)springAdvice).calculateArgumentBindings();
return (Advice)springAdvice;
}
}
通知方法与Bean匹配
AbstractAdvisorAutoProxyCreator.findAdvisorsThatCanApply
protected List<Advisor> findAdvisorsThatCanApply(List<Advisor> candidateAdvisors, Class<?> beanClass, String beanName) {
ProxyCreationContext.setCurrentProxiedBeanName(beanName);
List var4;
try {
// 通知方法集合与Bean匹配
var4 = AopUtils.findAdvisorsThatCanApply(candidateAdvisors, beanClass);
} finally {
ProxyCreationContext.setCurrentProxiedBeanName((String)null);
}
return var4;
}
总结
所以这一步会找到所有的切面,遍历其下的所有切点和通知方法,然后根据切点中的表达式去与Bean对象匹配,获取所有匹配成功的通知方法,将这些通知方法排序后就是最后的方法执行链,同时也说明该Bean需要被代理,所以需要创建代理对象
四、创建代理对象
AbstractAutoProxyCreator.createProxy
这里实际就是在创建代理对象前填充一下必要信息,然后创建代理对象,默认是采用JDK动态代理,如果被代理的目标对象不是接口,则会采用Cglib动态代理
- CglibAopProxy:Cglib动态代理逻辑类
- JdkDynamicAopProxy:Jdk动态代理逻辑类(我们以这个为例)
protected Object createProxy(Class<?> beanClass, @Nullable String beanName, @Nullable Object[] specificInterceptors, TargetSource targetSource) {
if (this.beanFactory instanceof ConfigurableListableBeanFactory) {
AutoProxyUtils.exposeTargetClass((ConfigurableListableBeanFactory)this.beanFactory, beanName, beanClass);
}
ProxyFactory proxyFactory = new ProxyFactory();
proxyFactory.copyFrom(this);
// 省略一大段...........
// 匹配成功的某些通知方法会被包装成拦截器 上面说过了
Advisor[] advisors = this.buildAdvisors(beanName, specificInterceptors);
proxyFactory.addAdvisors(advisors);
proxyFactory.setTargetSource(targetSource);
this.customizeProxyFactory(proxyFactory);
proxyFactory.setFrozen(this.freezeProxy);
if (this.advisorsPreFiltered()) {
proxyFactory.setPreFiltered(true);
}
ClassLoader classLoader = this.getProxyClassLoader();
if (classLoader instanceof SmartClassLoader && classLoader != beanClass.getClassLoader()) {
classLoader = ((SmartClassLoader)classLoader).getOriginalClassLoader();
}
// 上面设置搞定后 就要获取代理对象 JDK还是Cglib
return proxyFactory.getProxy(classLoader);
}
JdkDynamicAopProxy.getProxy
这一步很简单就是直接创建代理对象,处理类是this,说明该类本身就是处理类
public Object getProxy(@Nullable ClassLoader classLoader) {
if (logger.isTraceEnabled()) {
logger.trace("Creating JDK dynamic proxy: " + this.advised.getTargetSource());
}
return Proxy.newProxyInstance(classLoader, this.proxiedInterfaces, this);
}
五、代理执行方法
我们以JDK动态代理为例,最终代理对象在执行方法的时候就会调用该方法:
JdkDynamicAopProxy.invoke
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
Object oldProxy = null;
boolean setProxyContext = false;
TargetSource targetSource = this.advised.targetSource;
Object target = null;
Class var8;
try {
// 省略...........
if (method.getDeclaringClass() != DecoratingProxy.class) {
Object retVal;
// 省略...........
target = targetSource.getTarget();
Class<?> targetClass = target != null ? target.getClass() : null;
// 根据具体要执行的方法 再去之前匹配成功的通知方法集合中找对应的增强方法
// 前面匹配的通知方法集合并不一定是针对类下的所有方法 所以还需要匹配一次
List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);
// 为空说明该方法并不需要增强 所以直接调用原本方法即可
if (chain.isEmpty()) {
Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);
retVal = AopUtils.invokeJoinpointUsingReflection(target, method, argsToUse);
} else {
// 不为空说明需要增强 所以会包装一个连接点
// 然后执行 调用链条
MethodInvocation invocation = new ReflectiveMethodInvocation(proxy, target, method, args, targetClass, chain);
retVal = invocation.proceed();
}
Class<?> returnType = method.getReturnType();
if (retVal != null && retVal == target && returnType != Object.class && returnType.isInstance(proxy) && !RawTargetAccess.class.isAssignableFrom(method.getDeclaringClass())) {
retVal = proxy;
} else if (retVal == null && returnType != Void.TYPE && returnType.isPrimitive()) {
throw new AopInvocationException("Null return value from advice does not match primitive return type for: " + method);
}
Object var12 = retVal;
return var12;
}
var8 = AopProxyUtils.ultimateTargetClass(this.advised);
} finally {
// 省略...........
}
return var8;
}
六、总结
- AOP代理对象的生成是在Bean实例化前、循环依赖、初始化后这三个位置判断生成的(以初始化后为主,其他两个阶段属于特殊阶段)
- 通过获取所有的切面下的通知方法以切点表达式来与Bean匹配,来判断该Bean是否需要被代理,同时准备好了与该Bean相关的所有增强方法
- AOP默认采用JDK动态代理的方式,如果被代理目标对象不是接口,则会采用Cglib的代理方法
- AOP的底层原理虽然是动态代理,但是我觉得最重要的还是执行的方法调用链非常巧妙
- 在逻辑实现上:每种通知在调用链上执行的方式及其执行顺序决定了其扮演的角色
- 每个通知最后执行类在前面已经给出,可直接查看学习
最后附上个执行结构图
个人博客: 全是干货,相信不会让你失望
版权归原作者 Colins~ 所有, 如有侵权,请联系我们删除。