GPU服务器安装cuda和cudnn
1. 服务器驱动安装
- 显卡驱动下载地址
- https://www.nvidia.cn/Download/index.aspx?lang=cn
- 显卡驱动安装完成后可以通过命令:nvidia-smi 查看驱动信息
- 显卡型号查看命令:lspci |grep -i vga
root@hk-MZ32-AR0-00:~# nvidia-smi
Fri Feb 1017:27:58 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.106.00 Driver Version: 460.106.00 CUDA Version: 11.2||-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC || Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |||| MIG M. ||===============================+======================+======================||0 Tesla T4 Off | 00000000:04:00.0 Off |0|| N/A 46C P0 27W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|1 Tesla T4 Off | 00000000:06:00.0 Off |0|| N/A 43C P0 28W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|2 Tesla T4 Off | 00000000:0D:00.0 Off |0|| N/A 48C P0 28W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|3 Tesla T4 Off | 00000000:0F:00.0 Off |0|| N/A 45C P0 26W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|4 Tesla T4 Off | 00000000:17:00.0 Off |0|| N/A 48C P0 27W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|5 Tesla T4 Off | 00000000:19:00.0 Off |0|| N/A 48C P0 28W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|6 Tesla T4 Off | 00000000:21:00.0 Off |0|| N/A 45C P0 26W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|7 Tesla T4 Off | 00000000:23:00.0 Off |0|| N/A 45C P0 27W / 70W | 0MiB / 15109MiB |4% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: || GPU GI CI PID Type Process name GPU Memory || ID ID Usage ||=============================================================================|| No running processes found |
+-----------------------------------------------------------------------------+
2. cuda安装
- CUDA安装的时候需要注意显卡的驱动版本
- 参考文档 :接入附上一份
- 此次实验机的驱动版本是 460.106.00,我选用的版本是CUDA 11.0
- 下载地址:https://developer.nvidia.com/cuda-toolkit-archive
root@hk-MZ32-AR0-00:~# wget http://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run
--2023-01-29 19:55:42-- http://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run
Resolving developer.download.nvidia.com (developer.download.nvidia.com)... 152.199.39.144
Connecting to developer.download.nvidia.com (developer.download.nvidia.com)|152.199.39.144|:80... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run [following]
--2023-01-29 19:55:43-- https://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run
Connecting to developer.download.nvidia.com (developer.download.nvidia.com)|152.199.39.144|:443... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://developer.download.nvidia.cn/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run [following]
--2023-01-29 19:55:44-- https://developer.download.nvidia.cn/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run
Resolving developer.download.nvidia.cn (developer.download.nvidia.cn)... 125.64.2.195, 125.64.2.196, 150.138.231.66, ...
Connecting to developer.download.nvidia.cn (developer.download.nvidia.cn)|125.64.2.195|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 3066694836(2.9G)[application/octet-stream]
Saving to: ‘cuda_11.0.2_450.51.05_linux.run’
100%[=====================================================================================================================================>]3,066,694,836 11.3MB/s in 4m 25s
2023-01-29 20:00:15 (11.0 MB/s) - ‘cuda_11.0.2_450.51.05_linux.run’ saved [3066694836/3066694836]
root@hk-MZ32-AR0-00:~# ./cuda_11.0.2_450.51.05_linux.run
┌──────────────────────────────────────────────────────────────────────────────┐
│ Existing package manager installation of the driver found. It is strongly │
│ recommended that you remove this before continuing. │
│ Abort │
│ Continue │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ Up/Down: Move |'Enter': Select │
└──────────────────────────────────────────────────────────────────────────────┘
# 上下键选择 Continue,按enter,会出现如下画面
┌──────────────────────────────────────────────────────────────────────────────┐
│ End User License Agreement │
│ -------------------------- │
│ │
│ NVIDIA Software License Agreement and CUDA Supplement to │
│ Software License Agreement. │
│ │
│ │
│ Preface │
│ ------- │
│ │
│ The Software License Agreement in Chapter 1 and the Supplement │
│ in Chapter 2 contain license terms and conditions that govern │
│ the use of NVIDIA software. By accepting this agreement, you │
│ agree to comply with all the terms and conditions applicable │
│ to the product(s) included herein. │
│ │
│ │
│ NVIDIA Driver │
│ │
│ │
│──────────────────────────────────────────────────────────────────────────────│
│ Do you accept the above EULA? (accept/decline/quit): │
│ │
└──────────────────────────────────────────────────────────────────────────────┘
#输入 accept,按enter,回出现如下
┌──────────────────────────────────────────────────────────────────────────────┐
│ CUDA Installer │
│ - [X] Driver │
│ [X]450.51.05 │
│ + [X] CUDA Toolkit 11.0 │
│ [X] CUDA Samples 11.0 │
│ [X] CUDA Demo Suite 11.0 │
│ [X] CUDA Documentation 11.0 │
│ Options │
│ Install │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ Up/Down: Move | Left/Right: Expand |'Enter': Select |'A': Advanced options │
└──────────────────────────────────────────────────────────────────────────────┘
# 按上下键到 Driver,按空格,取消安装驱动,驱动我们前面已经安装过了。上下键到install,按enter,会出现安装过程============ Summary ============
Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-11.0/
Samples: Installed in /home/hk/, but missing recommended libraries
Please make sure that
- PATH includes /usr/local/cuda-11.0/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-11.0/lib64, or, add /usr/local/cuda-11.0/lib64 to /etc/ld.so.conf and run ldconfig as root
To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-11.0/bin
Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-11.0/doc/pdf for detailed information on setting up CUDA.
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least .00 is required for CUDA 11.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
sudo<CudaInstaller>.run --silent--driver
Logfile is /var/log/cuda-installer.log
把cuda的命令添加到系统环境变量
root@hk-MZ32-AR0-00:~# export PATH=$PATH:/usr/local/cuda/bin/ >> /etc/profile
root@hk-MZ32-AR0-00:~# source /etc/profile# 执行nvcc命令即可显示cuda的信息
root@hk-MZ32-AR0-00:~# nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c)2005-2020 NVIDIA Corporation
Built on Thu_Jun_11_22:26:38_PDT_2020
Cuda compilation tools, release 11.0, V11.0.194
Build cuda_11.0_bu.TC445_37.28540450_0
3. cudNN安装
- 下载链接:https://developer.nvidia.com/rdp/cudnn-archive
- cudNN下载的时候也需要注意CUDA的版本,如下图红色框标注的版本
root@hk-MZ32-AR0-00:~# rz
ZMODEM Session started e50
------------------------
Sent cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz
root@hk-MZ32-AR0-00:~# tar -xvf cudnn-linux-x86_64-8.7.0.84_cuda11-archive.tar.xz
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_infer_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_infer_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_train_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_train_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_infer_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_infer_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_train_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_train_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_infer_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_infer_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_train_static.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_train_static_v8.a
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_infer.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_infer.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_infer.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_train.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_train.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_adv_train.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_infer.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_infer.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_infer.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_train.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_train.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_cnn_train.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_infer.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_infer.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_infer.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_train.so.8.7.0
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_train.so
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/libcudnn_ops_train.so.8
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_adv_infer_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_adv_train_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_backend_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_cnn_infer_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_cnn_train_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_ops_infer_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_ops_train_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_version_v8.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_adv_infer.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_adv_train.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_backend.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_cnn_infer.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_cnn_train.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_ops_infer.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_ops_train.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/cudnn_version.h
cudnn-linux-x86_64-8.7.0.84_cuda11-archive/LICENSE
root@hk-MZ32-AR0-00:~# ll cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/
总用量 2520176
drwxr-xr-x 2255032174409611月 22 04:14 ./
drwxr-xr-x 4255032174409611月 22 04:14 ../
lrwxrwxrwx 12550321742311月 22 03:58 libcudnn_adv_infer.so -> libcudnn_adv_infer.so.8*
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_adv_infer.so.8 -> libcudnn_adv_infer.so.8.7.0*
-rwxr-xr-x 125503217413038190411月 22 03:58 libcudnn_adv_infer.so.8.7.0*
-rw-r--r-- 125503217413297992211月 22 03:58 libcudnn_adv_infer_static.a
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_adv_infer_static_v8.a -> libcudnn_adv_infer_static.a
lrwxrwxrwx 12550321742311月 22 03:58 libcudnn_adv_train.so -> libcudnn_adv_train.so.8*
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_adv_train.so.8 -> libcudnn_adv_train.so.8.7.0*
-rwxr-xr-x 125503217412109512011月 22 03:58 libcudnn_adv_train.so.8.7.0*
-rw-r--r-- 125503217412356629611月 22 03:58 libcudnn_adv_train_static.a
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_adv_train_static_v8.a -> libcudnn_adv_train_static.a
lrwxrwxrwx 12550321742311月 22 03:58 libcudnn_cnn_infer.so -> libcudnn_cnn_infer.so.8*
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_cnn_infer.so.8 -> libcudnn_cnn_infer.so.8.7.0*
-rwxr-xr-x 125503217463918554411月 22 03:58 libcudnn_cnn_infer.so.8.7.0*
-rw-r--r-- 125503217482954895011月 22 03:58 libcudnn_cnn_infer_static.a
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_cnn_infer_static_v8.a -> libcudnn_cnn_infer_static.a
lrwxrwxrwx 12550321742311月 22 03:58 libcudnn_cnn_train.so -> libcudnn_cnn_train.so.8*
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_cnn_train.so.8 -> libcudnn_cnn_train.so.8.7.0*
-rwxr-xr-x 125503217410219700011月 22 03:58 libcudnn_cnn_train.so.8.7.0*
-rw-r--r-- 125503217415352577611月 22 03:58 libcudnn_cnn_train_static.a
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_cnn_train_static_v8.a -> libcudnn_cnn_train_static.a
lrwxrwxrwx 12550321742311月 22 03:58 libcudnn_ops_infer.so -> libcudnn_ops_infer.so.8*
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_ops_infer.so.8 -> libcudnn_ops_infer.so.8.7.0*
-rwxr-xr-x 12550321749748933611月 22 03:58 libcudnn_ops_infer.so.8.7.0*
-rw-r--r-- 125503217410063690611月 22 03:58 libcudnn_ops_infer_static.a
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_ops_infer_static_v8.a -> libcudnn_ops_infer_static.a
lrwxrwxrwx 12550321742311月 22 03:58 libcudnn_ops_train.so -> libcudnn_ops_train.so.8*
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_ops_train.so.8 -> libcudnn_ops_train.so.8.7.0*
-rwxr-xr-x 12550321747470309611月 22 03:58 libcudnn_ops_train.so.8.7.0*
-rw-r--r-- 12550321747515686211月 22 03:58 libcudnn_ops_train_static.a
lrwxrwxrwx 12550321742711月 22 03:58 libcudnn_ops_train_static_v8.a -> libcudnn_ops_train_static.a
lrwxrwxrwx 12550321741311月 22 03:58 libcudnn.so -> libcudnn.so.8*
lrwxrwxrwx 12550321741711月 22 03:58 libcudnn.so.8 -> libcudnn.so.8.7.0*
-rwxr-xr-x 125503217415020011月 22 03:58 libcudnn.so.8.7.0*
root@hk-MZ32-AR0-00:~# ll cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/
总用量 448
drwxr-xr-x 2255032174409611月 22 04:14 ./
drwxr-xr-x 4255032174409611月 22 04:14 ../
-rw-r--r-- 12550321742902511月 22 03:58 cudnn_adv_infer.h
-rw-r--r-- 12550321742902511月 22 03:58 cudnn_adv_infer_v8.h
-rw-r--r-- 12550321742770011月 22 03:58 cudnn_adv_train.h
-rw-r--r-- 12550321742770011月 22 03:58 cudnn_adv_train_v8.h
-rw-r--r-- 12550321742472711月 22 03:58 cudnn_backend.h
-rw-r--r-- 12550321742472711月 22 03:58 cudnn_backend_v8.h
-rw-r--r-- 12550321742908311月 22 03:58 cudnn_cnn_infer.h
-rw-r--r-- 12550321742908311月 22 03:58 cudnn_cnn_infer_v8.h
-rw-r--r-- 12550321741021711月 22 03:58 cudnn_cnn_train.h
-rw-r--r-- 12550321741021711月 22 03:58 cudnn_cnn_train_v8.h
-rw-r--r-- 1255032174296811月 22 03:58 cudnn.h
-rw-r--r-- 12550321744963111月 22 03:58 cudnn_ops_infer.h
-rw-r--r-- 12550321744963111月 22 03:58 cudnn_ops_infer_v8.h
-rw-r--r-- 12550321742573311月 22 03:58 cudnn_ops_train.h
-rw-r--r-- 12550321742573311月 22 03:58 cudnn_ops_train_v8.h
-rw-r--r-- 1255032174296811月 22 03:58 cudnn_v8.h
-rw-r--r-- 1255032174311311月 22 03:58 cudnn_version.h
-rw-r--r-- 1255032174311311月 22 03:58 cudnn_version_v8.h
root@hk-MZ32-AR0-00:~# cp -P cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/* /usr/local/cuda/lib64/
root@hk-MZ32-AR0-00:~# cp -P cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/* /usr/local/cuda/include/
root@hk-MZ32-AR0-00:~# ll /usr/local/cuda/lib64/libcudnn*
lrwxrwxrwx 1 root root 232月 1017:39 /usr/local/cuda/lib64/libcudnn_adv_infer.so -> libcudnn_adv_infer.so.8*
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_adv_infer.so.8 -> libcudnn_adv_infer.so.8.7.0*
-rwxr-xr-x 1 root root 1303819042月 1017:39 /usr/local/cuda/lib64/libcudnn_adv_infer.so.8.7.0*
-rw-r--r-- 1 root root 1329799222月 1017:39 /usr/local/cuda/lib64/libcudnn_adv_infer_static.a
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_adv_infer_static_v8.a -> libcudnn_adv_infer_static.a
lrwxrwxrwx 1 root root 232月 1017:39 /usr/local/cuda/lib64/libcudnn_adv_train.so -> libcudnn_adv_train.so.8*
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_adv_train.so.8 -> libcudnn_adv_train.so.8.7.0*
-rwxr-xr-x 1 root root 1210951202月 1017:39 /usr/local/cuda/lib64/libcudnn_adv_train.so.8.7.0*
-rw-r--r-- 1 root root 1235662962月 1017:39 /usr/local/cuda/lib64/libcudnn_adv_train_static.a
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_adv_train_static_v8.a -> libcudnn_adv_train_static.a
lrwxrwxrwx 1 root root 232月 1017:39 /usr/local/cuda/lib64/libcudnn_cnn_infer.so -> libcudnn_cnn_infer.so.8*
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_cnn_infer.so.8 -> libcudnn_cnn_infer.so.8.7.0*
-rwxr-xr-x 1 root root 6391855442月 1017:39 /usr/local/cuda/lib64/libcudnn_cnn_infer.so.8.7.0*
-rw-r--r-- 1 root root 8295489502月 1017:39 /usr/local/cuda/lib64/libcudnn_cnn_infer_static.a
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_cnn_infer_static_v8.a -> libcudnn_cnn_infer_static.a
lrwxrwxrwx 1 root root 232月 1017:39 /usr/local/cuda/lib64/libcudnn_cnn_train.so -> libcudnn_cnn_train.so.8*
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_cnn_train.so.8 -> libcudnn_cnn_train.so.8.7.0*
-rwxr-xr-x 1 root root 1021970002月 1017:39 /usr/local/cuda/lib64/libcudnn_cnn_train.so.8.7.0*
-rw-r--r-- 1 root root 1535257762月 1017:39 /usr/local/cuda/lib64/libcudnn_cnn_train_static.a
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_cnn_train_static_v8.a -> libcudnn_cnn_train_static.a
lrwxrwxrwx 1 root root 232月 1017:39 /usr/local/cuda/lib64/libcudnn_ops_infer.so -> libcudnn_ops_infer.so.8*
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_ops_infer.so.8 -> libcudnn_ops_infer.so.8.7.0*
-rwxr-xr-x 1 root root 974893362月 1017:39 /usr/local/cuda/lib64/libcudnn_ops_infer.so.8.7.0*
-rw-r--r-- 1 root root 1006369062月 1017:39 /usr/local/cuda/lib64/libcudnn_ops_infer_static.a
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_ops_infer_static_v8.a -> libcudnn_ops_infer_static.a
lrwxrwxrwx 1 root root 232月 1017:39 /usr/local/cuda/lib64/libcudnn_ops_train.so -> libcudnn_ops_train.so.8*
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_ops_train.so.8 -> libcudnn_ops_train.so.8.7.0*
-rwxr-xr-x 1 root root 747030962月 1017:39 /usr/local/cuda/lib64/libcudnn_ops_train.so.8.7.0*
-rw-r--r-- 1 root root 751568622月 1017:39 /usr/local/cuda/lib64/libcudnn_ops_train_static.a
lrwxrwxrwx 1 root root 272月 1017:39 /usr/local/cuda/lib64/libcudnn_ops_train_static_v8.a -> libcudnn_ops_train_static.a
lrwxrwxrwx 1 root root 132月 1017:39 /usr/local/cuda/lib64/libcudnn.so -> libcudnn.so.8*
lrwxrwxrwx 1 root root 172月 1017:39 /usr/local/cuda/lib64/libcudnn.so.8 -> libcudnn.so.8.7.0*
-rwxr-xr-x 1 root root 1502002月 1017:39 /usr/local/cuda/lib64/libcudnn.so.8.7.0*
root@hk-MZ32-AR0-00:~# ll /usr/local/cuda/lib64/libcudnn* | wc -l33
root@hk-MZ32-AR0-00:~# ll cudnn-linux-x86_64-8.7.0.84_cuda11-archive/
include/ lib/ LICENSE
root@hk-MZ32-AR0-00:~# ll cudnn-linux-x86_64-8.7.0.84_cuda11-archive/lib/* |wc -l33
root@hk-MZ32-AR0-00:~# ll /usr/local/cuda/include/cudn*
-rw-r--r-- 1 root root 290252月 1017:39 /usr/local/cuda/include/cudnn_adv_infer.h
-rw-r--r-- 1 root root 290252月 1017:39 /usr/local/cuda/include/cudnn_adv_infer_v8.h
-rw-r--r-- 1 root root 277002月 1017:39 /usr/local/cuda/include/cudnn_adv_train.h
-rw-r--r-- 1 root root 277002月 1017:39 /usr/local/cuda/include/cudnn_adv_train_v8.h
-rw-r--r-- 1 root root 247272月 1017:39 /usr/local/cuda/include/cudnn_backend.h
-rw-r--r-- 1 root root 247272月 1017:39 /usr/local/cuda/include/cudnn_backend_v8.h
-rw-r--r-- 1 root root 290832月 1017:39 /usr/local/cuda/include/cudnn_cnn_infer.h
-rw-r--r-- 1 root root 290832月 1017:39 /usr/local/cuda/include/cudnn_cnn_infer_v8.h
-rw-r--r-- 1 root root 102172月 1017:39 /usr/local/cuda/include/cudnn_cnn_train.h
-rw-r--r-- 1 root root 102172月 1017:39 /usr/local/cuda/include/cudnn_cnn_train_v8.h
-rw-r--r-- 1 root root 29682月 1017:39 /usr/local/cuda/include/cudnn.h
-rw-r--r-- 1 root root 496312月 1017:39 /usr/local/cuda/include/cudnn_ops_infer.h
-rw-r--r-- 1 root root 496312月 1017:39 /usr/local/cuda/include/cudnn_ops_infer_v8.h
-rw-r--r-- 1 root root 257332月 1017:39 /usr/local/cuda/include/cudnn_ops_train.h
-rw-r--r-- 1 root root 257332月 1017:39 /usr/local/cuda/include/cudnn_ops_train_v8.h
-rw-r--r-- 1 root root 29682月 1017:39 /usr/local/cuda/include/cudnn_v8.h
-rw-r--r-- 1 root root 31132月 1017:39 /usr/local/cuda/include/cudnn_version.h
-rw-r--r-- 1 root root 31132月 1017:39 /usr/local/cuda/include/cudnn_version_v8.h
root@hk-MZ32-AR0-00:~# ll /usr/local/cuda/include/cudn* |wc -l18
root@hk-MZ32-AR0-00:~# ll cudnn-linux-x86_64-8.7.0.84_cuda11-archive/include/* | wc -l 18
4. 安装docker环境
root@hk-MZ32-AR0-00:~# curl -fsSL https://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg | sudo apt-key add -
root@hk-MZ32-AR0-00:~# add-apt-repository "deb [arch=amd64] https://mirrors.aliyun.com/docker-ce/linux/ubuntu $(lsb_release -cs) stable"
root@hk-MZ32-AR0-00:~# apt-get -y install docker-ce
5. 安装nvidia-docker2
5.1 ubuntu系统安装
root@hk-MZ32-AR0-00:~# curl -s -L https://nvidia.github.io/nvidia-docker/$(. /etc/os-release;echo $ID$VERSION_ID)/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
deb https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/$(ARCH) /
#deb https://nvidia.github.io/libnvidia-container/experimental/ubuntu18.04/$(ARCH) /
deb https://nvidia.github.io/nvidia-container-runtime/stable/ubuntu18.04/$(ARCH) /
#deb https://nvidia.github.io/nvidia-container-runtime/experimental/ubuntu18.04/$(ARCH) /
deb https://nvidia.github.io/nvidia-docker/ubuntu18.04/$(ARCH) /
root@hk-MZ32-AR0-00:~# sed -i 's/18.04/22.04/g' /etc/apt/sources.list.d/nvidia-docker.list
root@hk-MZ32-AR0-00:~# apt-get update
命中:1 http://mirrors.aliyun.com/ubuntu bionic InRelease
命中:2 https://mirrors.aliyun.com/docker-ce/linux/ubuntu focal InRelease
获取:3 http://mirrors.aliyun.com/ubuntu bionic-security InRelease [88.7 kB]
命中:4 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic InRelease
获取:5 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates InRelease [88.7 kB]
获取:6 http://mirrors.aliyun.com/ubuntu bionic-updates InRelease [88.7 kB]
获取:7 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-backports InRelease [83.3 kB]
获取:8 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 InRelease [1,484 B]
命中:9 https://packages.microsoft.com/ubuntu/18.04/prod bionic InRelease
获取:10 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-security InRelease [88.7 kB]
获取:11 http://mirrors.aliyun.com/ubuntu bionic-proposed InRelease [242 kB]
获取:12 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-proposed InRelease [242 kB]
命中:13 http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu focal InRelease
命中:14 https://linux.teamviewer.com/deb stable InRelease
获取:15 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates/main i386 Packages [1,604 kB]
获取:16 http://mirrors.aliyun.com/ubuntu bionic-backports InRelease [83.3 kB]
获取:17 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates/main amd64 Packages [2,909 kB]
获取:18 http://mirrors.aliyun.com/ubuntu bionic-security/main amd64 DEP-11 Metadata [76.8 kB]
获取:19 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates/main amd64 DEP-11 Metadata [297 kB]
获取:20 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates/universe amd64 DEP-11 Metadata [302 kB]
获取:21 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-updates/multiverse amd64 DEP-11 Metadata [2,468 B]
获取:22 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-backports/main amd64 DEP-11 Metadata [8,108 B]
获取:23 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-backports/universe amd64 DEP-11 Metadata [10.0 kB]
获取:24 https://nvidia.github.io/libnvidia-container/stable/ubuntu22.04/amd64 InRelease [1,484 B]
获取:25 http://mirrors.aliyun.com/ubuntu bionic-security/universe amd64 DEP-11 Metadata [61.0 kB]
获取:26 http://mirrors.aliyun.com/ubuntu bionic-security/multiverse amd64 DEP-11 Metadata [2,464 B]
获取:27 http://mirrors.aliyun.com/ubuntu bionic-updates/main amd64 Packages [2,909 kB]
获取:28 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-security/main amd64 DEP-11 Metadata [76.8 kB]
获取:29 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-security/universe amd64 DEP-11 Metadata [61.1 kB]
获取:30 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-security/multiverse amd64 DEP-11 Metadata [2,464 B]
获取:31 https://nvidia.github.io/nvidia-container-runtime/stable/ubuntu22.04/amd64 InRelease [1,481 B]
获取:32 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-proposed/main Sources [81.3 kB]
获取:33 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-proposed/main Translation-en [38.8 kB]
获取:34 https://nvidia.github.io/nvidia-docker/ubuntu22.04/amd64 InRelease [1,474 B]
获取:35 https://mirrors.tuna.tsinghua.edu.cn/ubuntu bionic-proposed/main amd64 DEP-11 Metadata [6,552 B]
获取:36 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 Packages [22.3 kB]
获取:37 https://nvidia.github.io/libnvidia-container/stable/ubuntu22.04/amd64 Packages [22.3 kB]
获取:38 https://nvidia.github.io/nvidia-container-runtime/stable/ubuntu22.04/amd64 Packages [7,416 B]
获取:39 https://nvidia.github.io/nvidia-docker/ubuntu22.04/amd64 Packages [4,488 B]
获取:40 http://mirrors.aliyun.com/ubuntu bionic-updates/main i386 Packages [1,604 kB]
获取:41 http://mirrors.aliyun.com/ubuntu bionic-updates/main amd64 DEP-11 Metadata [297 kB]
获取:42 http://mirrors.aliyun.com/ubuntu bionic-updates/universe amd64 DEP-11 Metadata [302 kB]
获取:43 http://mirrors.aliyun.com/ubuntu bionic-updates/multiverse amd64 DEP-11 Metadata [2,468 B]
获取:44 http://mirrors.aliyun.com/ubuntu bionic-proposed/main Sources [81.3 kB]
获取:45 http://mirrors.aliyun.com/ubuntu bionic-proposed/main Translation-en [38.8 kB]
获取:46 http://mirrors.aliyun.com/ubuntu bionic-proposed/main amd64 DEP-11 Metadata [6,516 B]
获取:47 http://mirrors.aliyun.com/ubuntu bionic-backports/main amd64 DEP-11 Metadata [8,092 B]
获取:48 http://mirrors.aliyun.com/ubuntu bionic-backports/universe amd64 DEP-11 Metadata [10.1 kB]
已下载 11.9 MB,耗时 11秒 (1,115 kB/s)
正在读取软件包列表... 2%
正在读取软件包列表... 完成
root@test:/etc/apt/sources.list.d#
root@test:/etc/apt/sources.list.d# apt-get install nvidia-docker2
正在读取软件包列表... 完成
正在分析软件包的依赖关系树
正在读取状态信息... 完成
下列软件包是自动安装的并且现在不需要了:
libevent-2.1-7 libnatpmp1 libxvmc1 transmission-common
使用'apt autoremove'来卸载它(它们)。
将会同时安装下列软件:
libnvidia-container-tools libnvidia-container1 nvidia-container-toolkit nvidia-container-toolkit-base
下列【新】软件包将被安装:
libnvidia-container-tools libnvidia-container1 nvidia-container-toolkit nvidia-container-toolkit-base nvidia-docker2
升级了 0 个软件包,新安装了 5 个软件包,要卸载 0 个软件包,有 80 个软件包未被升级。
需要下载 3,773 kB 的归档。
解压缩后会消耗 14.6 MB 的额外空间。
您希望继续执行吗? [Y/n] y
获取:1 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 libnvidia-container1 1.12.0-1 [927 kB]
获取:2 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 libnvidia-container-tools 1.12.0-1 [24.5 kB]
获取:3 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 nvidia-container-toolkit-base 1.12.0-1 [2,066 kB]
获取:4 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 nvidia-container-toolkit 1.12.0-1 [750 kB]
获取:5 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 nvidia-docker2 2.12.0-1 [5,544 B]
已下载 3,773 kB,耗时 2分 13秒 (28.3 kB/s)
正在选中未选择的软件包 libnvidia-container1:amd64。
(正在读取数据库 ... 系统当前共安装有 202374 个文件和目录。)
准备解压 .../libnvidia-container1_1.12.0-1_amd64.deb ...
正在解压 libnvidia-container1:amd64 (1.12.0-1)...
正在选中未选择的软件包 libnvidia-container-tools。
准备解压 .../libnvidia-container-tools_1.12.0-1_amd64.deb ...
正在解压 libnvidia-container-tools (1.12.0-1)...
正在选中未选择的软件包 nvidia-container-toolkit-base。
准备解压 .../nvidia-container-toolkit-base_1.12.0-1_amd64.deb ...
正在解压 nvidia-container-toolkit-base (1.12.0-1)...
正在选中未选择的软件包 nvidia-container-toolkit。
准备解压 .../nvidia-container-toolkit_1.12.0-1_amd64.deb ...
正在解压 nvidia-container-toolkit (1.12.0-1)...
正在选中未选择的软件包 nvidia-docker2。
准备解压 .../nvidia-docker2_2.12.0-1_all.deb ...
正在解压 nvidia-docker2 (2.12.0-1)...
正在设置 nvidia-container-toolkit-base (1.12.0-1)...
正在设置 libnvidia-container1:amd64 (1.12.0-1)...
正在设置 libnvidia-container-tools (1.12.0-1)...
正在设置 nvidia-container-toolkit (1.12.0-1)...
正在设置 nvidia-docker2 (2.12.0-1)...
正在处理用于 libc-bin (2.31-0ubuntu9.7) 的触发器 ...
root@hk-MZ32-AR0-00:~# systemctl restart docker
5.2 centos系统安装
[root@bj ~]# sudo yum install -y nvidia-docker2
Loaded plugins: fastestmirror, product-id, search-disabled-repos, subscription-manager
This system is not registered with an entitlement server. You can use subscription-manager to register.
Loading mirror speeds from cached hostfile
epel/x86_64/metalink |6.2 kB 00:00:00
* base: mirrors.163.com
* epel: mirrors.bfsu.edu.cn
* extras: mirrors.ustc.edu.cn
* updates: mirrors.ustc.edu.cn
base |3.6 kB 00:00:00
docker-ce-stable |3.5 kB 00:00:00
extras |2.9 kB 00:00:00
libnvidia-container/x86_64/signature |833 B 00:00:00
Retrieving key from https://nvidia.github.io/libnvidia-container/gpgkey
Importing GPG key 0xF796ECB0:
Userid :"NVIDIA CORPORATION (Open Source Projects) <[email protected]>"
Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0
From : https://nvidia.github.io/libnvidia-container/gpgkey
libnvidia-container/x86_64/signature |2.1 kB 00:00:00 !!!
nvidia-container-runtime/x86_64/signature |833 B 00:00:00
Retrieving key from https://nvidia.github.io/nvidia-container-runtime/gpgkey
Importing GPG key 0xF796ECB0:
Userid :"NVIDIA CORPORATION (Open Source Projects) <[email protected]>"
Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0
From : https://nvidia.github.io/nvidia-container-runtime/gpgkey
nvidia-container-runtime/x86_64/signature |2.1 kB 00:00:00 !!!
nvidia-docker/x86_64/signature |833 B 00:00:00
Retrieving key from https://nvidia.github.io/nvidia-docker/gpgkey
Importing GPG key 0xF796ECB0:
Userid :"NVIDIA CORPORATION (Open Source Projects) <[email protected]>"
Fingerprint: c95b 321b 61e8 8c18 09c4 f759 ddca e044 f796 ecb0
From : https://nvidia.github.io/nvidia-docker/gpgkey
nvidia-docker/x86_64/signature |2.1 kB 00:00:00 !!!
teamviewer/x86_64/signature |867 B 00:00:00
teamviewer/x86_64/signature |2.5 kB 00:00:00 !!!
updates |2.9 kB 00:00:00
(1/3): nvidia-container-runtime/x86_64/primary |11 kB 00:00:01
(2/3): nvidia-docker/x86_64/primary |8.0 kB 00:00:01
(3/3): libnvidia-container/x86_64/primary |27 kB 00:00:03
libnvidia-container 171/171
nvidia-container-runtime 71/71
nvidia-docker 54/54
Resolving Dependencies
--> Running transaction check
---> Package nvidia-docker2.noarch 0:2.11.0-1 will be installed
--> Processing Dependency: nvidia-container-toolkit >=1.10.0-1 for package: nvidia-docker2-2.11.0-1.noarch
--> Running transaction check
---> Package nvidia-container-toolkit.x86_64 0:1.11.0-1 will be installed
--> Processing Dependency: nvidia-container-toolkit-base =1.11.0-1 for package: nvidia-container-toolkit-1.11.0-1.x86_64
--> Processing Dependency: libnvidia-container-tools <2.0.0 for package: nvidia-container-toolkit-1.11.0-1.x86_64
--> Processing Dependency: libnvidia-container-tools >=1.11.0-1 for package: nvidia-container-toolkit-1.11.0-1.x86_64
--> Running transaction check
---> Package libnvidia-container-tools.x86_64 0:1.11.0-1 will be installed
--> Processing Dependency: libnvidia-container1(x86-64)>=1.11.0-1 for package: libnvidia-container-tools-1.11.0-1.x86_64
--> Processing Dependency: libnvidia-container.so.1(NVC_1.0)(64bit)for package: libnvidia-container-tools-1.11.0-1.x86_64
--> Processing Dependency: libnvidia-container.so.1()(64bit)for package: libnvidia-container-tools-1.11.0-1.x86_64
---> Package nvidia-container-toolkit-base.x86_64 0:1.11.0-1 will be installed
--> Running transaction check
---> Package libnvidia-container1.x86_64 0:1.11.0-1 will be installed
--> Finished Dependency Resolution
Dependencies Resolved
=================================================================================================================================================================================
Package Arch Version Repository Size
=================================================================================================================================================================================
Installing:
nvidia-docker2 noarch 2.11.0-1 libnvidia-container 8.7 k
Installing for dependencies:
libnvidia-container-tools x86_64 1.11.0-1 libnvidia-container 50 k
libnvidia-container1 x86_64 1.11.0-1 libnvidia-container 1.0 M
nvidia-container-toolkit x86_64 1.11.0-1 libnvidia-container 780 k
nvidia-container-toolkit-base x86_64 1.11.0-1 libnvidia-container 2.5 M
Transaction Summary
=================================================================================================================================================================================
Install 1 Package (+4 Dependent packages)
Total download size: 4.3 M
Installed size: 12 M
Downloading packages:
(1/5): libnvidia-container-tools-1.11.0-1.x86_64.rpm |50 kB 00:00:01
(2/5): libnvidia-container1-1.11.0-1.x86_64.rpm |1.0 MB 00:00:03
(3/5): nvidia-container-toolkit-1.11.0-1.x86_64.rpm |780 kB 00:00:03
(4/5): nvidia-docker2-2.11.0-1.noarch.rpm |8.7 kB 00:00:00
(5/5): nvidia-container-toolkit-base-1.11.0-1.x86_64.rpm |2.5 MB 00:00:43
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Total 94 kB/s |4.3 MB 00:00:46
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : nvidia-container-toolkit-base-1.11.0-1.x86_64 1/5
Installing : libnvidia-container1-1.11.0-1.x86_64 2/5
Installing : libnvidia-container-tools-1.11.0-1.x86_64 3/5
Installing : nvidia-container-toolkit-1.11.0-1.x86_64 4/5
Installing : nvidia-docker2-2.11.0-1.noarch 5/5
Verifying : libnvidia-container1-1.11.0-1.x86_64 1/5
Verifying : nvidia-container-toolkit-base-1.11.0-1.x86_64 2/5
Verifying : nvidia-container-toolkit-1.11.0-1.x86_64 3/5
Verifying : libnvidia-container-tools-1.11.0-1.x86_64 4/5
Verifying : nvidia-docker2-2.11.0-1.noarch 5/5
Installed:
nvidia-docker2.noarch 0:2.11.0-1
Dependency Installed:
libnvidia-container-tools.x86_64 0:1.11.0-1 libnvidia-container1.x86_64 0:1.11.0-1 nvidia-container-toolkit.x86_64 0:1.11.0-1 nvidia-container-toolkit-base.x86_64 0:1.11.0-1
Complete!
- 若是centos系统,需要用yum安装过nvidia-docker2,虽然已经安装过nvidia-container-toolkit,但是在容器中使用gpu的时候报错,更新安装 nvidia-container-toolkit
# 设置yum源:nvidia-container-toolkit.repo[root@bj ~]# distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \>&&curl-s-L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.repo |tee /etc/yum.repos.d/nvidia-container-toolkit.repo
[libnvidia-container]name=libnvidia-container
baseurl=https://nvidia.github.io/libnvidia-container/stable/centos7/$basearchrepo_gpgcheck=1gpgcheck=0enabled=1gpgkey=https://nvidia.github.io/libnvidia-container/gpgkey
sslverify=1sslcacert=/etc/pki/tls/certs/ca-bundle.crt
[libnvidia-container-experimental]name=libnvidia-container-experimental
baseurl=https://nvidia.github.io/libnvidia-container/experimental/centos7/$basearchrepo_gpgcheck=1gpgcheck=0enabled=0gpgkey=https://nvidia.github.io/libnvidia-container/gpgkey
sslverify=1sslcacert=/etc/pki/tls/certs/ca-bundle.crt
[root@bj ~]# yum install -y nvidia-container-toolkit
Loaded plugins: fastestmirror, product-id, search-disabled-repos, subscription-manager
This system is not registered with an entitlement server. You can use subscription-manager to register.
Repository libnvidia-container is listed more than once in the configuration
Repository libnvidia-container-experimental is listed more than once in the configuration
Loading mirror speeds from cached hostfile
* base: mirrors.ustc.edu.cn
* epel: mirrors.ustc.edu.cn
* extras: mirrors.ustc.edu.cn
* updates: mirrors.ustc.edu.cn
Resolving Dependencies
--> Running transaction check
---> Package nvidia-container-toolkit.x86_64 0:1.11.0-1 will be updated
---> Package nvidia-container-toolkit.x86_64 0:1.12.0-0.1.rc.3 will be an update
--> Processing Dependency: nvidia-container-toolkit-base =1.12.0-0.1.rc.3 for package: nvidia-container-toolkit-1.12.0-0.1.rc.3.x86_64
--> Processing Dependency: libnvidia-container-tools >=1.12.0-0.1.rc.3 for package: nvidia-container-toolkit-1.12.0-0.1.rc.3.x86_64
--> Running transaction check
---> Package libnvidia-container-tools.x86_64 0:1.11.0-1 will be updated
---> Package libnvidia-container-tools.x86_64 0:1.12.0-0.1.rc.3 will be an update
--> Processing Dependency: libnvidia-container1(x86-64)>=1.12.0-0.1.rc.3 for package: libnvidia-container-tools-1.12.0-0.1.rc.3.x86_64
---> Package nvidia-container-toolkit-base.x86_64 0:1.11.0-1 will be updated
---> Package nvidia-container-toolkit-base.x86_64 0:1.12.0-0.1.rc.3 will be an update
--> Running transaction check
---> Package libnvidia-container1.x86_64 0:1.11.0-1 will be updated
---> Package libnvidia-container1.x86_64 0:1.12.0-0.1.rc.3 will be an update
--> Finished Dependency Resolution
Dependencies Resolved
=================================================================================================================================================================================
Package Arch Version Repository Size
=================================================================================================================================================================================
Updating:
nvidia-container-toolkit x86_64 1.12.0-0.1.rc.3 libnvidia-container-experimental 797 k
Updating for dependencies:
libnvidia-container-tools x86_64 1.12.0-0.1.rc.3 libnvidia-container-experimental 50 k
libnvidia-container1 x86_64 1.12.0-0.1.rc.3 libnvidia-container-experimental 1.0 M
nvidia-container-toolkit-base x86_64 1.12.0-0.1.rc.3 libnvidia-container-experimental 3.4 M
Transaction Summary
=================================================================================================================================================================================
Upgrade 1 Package (+3 Dependent packages)
Total download size: 5.2 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
(1/4): libnvidia-container-tools-1.12.0-0.1.rc.3.x86_64.rpm |50 kB 00:00:00
(2/4): nvidia-container-toolkit-1.12.0-0.1.rc.3.x86_64.rpm |797 kB 00:00:00
(3/4): libnvidia-container1-1.12.0-0.1.rc.3.x86_64.rpm |1.0 MB 00:00:02
(4/4): nvidia-container-toolkit-base-1.12.0-0.1.rc.3.x86_64.rpm |3.4 MB 00:00:00
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Total 2.0 MB/s |5.2 MB 00:00:02
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Updating : nvidia-container-toolkit-base-1.12.0-0.1.rc.3.x86_64 1/8
Updating : libnvidia-container1-1.12.0-0.1.rc.3.x86_64 2/8
Updating : libnvidia-container-tools-1.12.0-0.1.rc.3.x86_64 3/8
Updating : nvidia-container-toolkit-1.12.0-0.1.rc.3.x86_64 4/8
Cleanup : nvidia-container-toolkit-1.11.0-1.x86_64 5/8
Cleanup : libnvidia-container-tools-1.11.0-1.x86_64 6/8
Cleanup : libnvidia-container1-1.11.0-1.x86_64 7/8
Cleanup : nvidia-container-toolkit-base-1.11.0-1.x86_64 8/8
Verifying : libnvidia-container1-1.12.0-0.1.rc.3.x86_64 1/8
Verifying : nvidia-container-toolkit-base-1.12.0-0.1.rc.3.x86_64 2/8
Verifying : libnvidia-container-tools-1.12.0-0.1.rc.3.x86_64 3/8
Verifying : nvidia-container-toolkit-1.12.0-0.1.rc.3.x86_64 4/8
Verifying : libnvidia-container-tools-1.11.0-1.x86_64 5/8
Verifying : nvidia-container-toolkit-base-1.11.0-1.x86_64 6/8
Verifying : nvidia-container-toolkit-1.11.0-1.x86_64 7/8
Verifying : libnvidia-container1-1.11.0-1.x86_64 8/8
Updated:
nvidia-container-toolkit.x86_64 0:1.12.0-0.1.rc.3
Dependency Updated:
libnvidia-container-tools.x86_64 0:1.12.0-0.1.rc.3 libnvidia-container1.x86_64 0:1.12.0-0.1.rc.3 nvidia-container-toolkit-base.x86_64 0:1.12.0-0.1.rc.3
Complete![root@bj ~]# systemctl restart docker
6. 测试docker容调用GPU服务
root@hk-MZ32-AR0-00:~# docker run --rm --gpus all nvidia/cuda:10.0-base nvidia-smi
Sat Feb 11 07:13:48 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.106.00 Driver Version: 460.106.00 CUDA Version: 11.2||-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC || Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |||| MIG M. ||===============================+======================+======================||0 Tesla T4 Off | 00000000:04:00.0 Off |0|| N/A 47C P0 27W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|1 Tesla T4 Off | 00000000:06:00.0 Off |0|| N/A 43C P0 28W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|2 Tesla T4 Off | 00000000:0D:00.0 Off |0|| N/A 49C P0 28W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|3 Tesla T4 Off | 00000000:0F:00.0 Off |0|| N/A 45C P0 26W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|4 Tesla T4 Off | 00000000:17:00.0 Off |0|| N/A 48C P0 27W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|5 Tesla T4 Off | 00000000:19:00.0 Off |0|| N/A 49C P0 28W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|6 Tesla T4 Off | 00000000:21:00.0 Off |0|| N/A 45C P0 26W / 70W | 0MiB / 15109MiB |0% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
|7 Tesla T4 Off | 00000000:23:00.0 Off |0|| N/A 45C P0 28W / 70W | 0MiB / 15109MiB |5% Default |||| N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: || GPU GI CI PID Type Process name GPU Memory || ID ID Usage ||=============================================================================|| No running processes found |
+-----------------------------------------------------------------------------+
本文转载自: https://blog.csdn.net/u011709380/article/details/128974512
版权归原作者 嘻哈记 所有, 如有侵权,请联系我们删除。
版权归原作者 嘻哈记 所有, 如有侵权,请联系我们删除。