0


【社区图书馆】二、LED子系统——硬件驱动层

img
个人主页:董哥聊技术 我是董哥,嵌入式领域新星创作者 创作理念:专注分享高质量嵌入式文章,让大家读有所得!
img

文章目录

上篇文章我们了解了子系统的框架,下面我们来分析驱动框架中每层的实现以及作用。

在这里插入图片描述

LED

子系统中,硬件驱动层相关文件在包括:

kernel/drivers/leds/

目录下,其主要的函数有:

led-gpio.c

led-xxx.c

,其中

led-gpio.c

为通用的平台驱动程序,

led-xxx.c

为不同厂家提供的平台驱动程序。

我们在这里主要分析

led-gpio.c

1、gpio_led_probe分析

打开该文件,直接找到加载驱动的入口函数

gpio_led_probe

1.1 相关数据结构

1.1.1 gpio_led_platform_data

struct gpio_led_platform_data {
    int         num_leds;
    const struct gpio_led *leds;

#define GPIO_LED_NO_BLINK_LOW    0    /* No blink GPIO state low */
#define GPIO_LED_NO_BLINK_HIGH    1    /* No blink GPIO state high */
#define GPIO_LED_BLINK        2    /* Please, blink */
    gpio_blink_set_t    gpio_blink_set;
};

结构体名称

gpio_led_platform_data

文件位置

include/linux/leds.h

主要作用

LED

的平台数据,用于对

LED

硬件设备的统一管理

这个结构体用于父节点向子节点传递的数据时使用

1.1.2 gpio_leds_priv

struct gpio_leds_priv {
    int num_leds;
    struct gpio_led_data leds[];
};

结构体名称

gpio_leds_priv

文件位置

drivers/leds/leds-gpio.c

主要作用

LED

驱动的私有数据类型,管理全部的

LED

设备。

这里的

num_leds

通过解析设备树的子节点的个数来获取

leds[]

根据获取的

num_leds

个数,分配对应的空间,来初始化相关数据

1.2 实现流程

staticintgpio_led_probe(structplatform_device*pdev){structgpio_led_platform_data*pdata =dev_get_platdata(&pdev->dev);//    检索设备的平台数据structgpio_leds_priv*priv;int i, ret =0;if(pdata && pdata->num_leds){//    判断平台数据LED数量
        priv =devm_kzalloc(&pdev->dev,sizeof_gpio_leds_priv(pdata->num_leds),
                    GFP_KERNEL);if(!priv)return-ENOMEM;

        priv->num_leds = pdata->num_leds;for(i =0; i < priv->num_leds; i++){
            ret =create_gpio_led(&pdata->leds[i],&priv->leds[i],&pdev->dev,NULL,
                          pdata->gpio_blink_set);if(ret <0)return ret;}}else{
        priv =gpio_leds_create(pdev);//    创建LED设备    if(IS_ERR(priv))returnPTR_ERR(priv);}platform_set_drvdata(pdev, priv);return0;}

函数介绍

gpio_led_probe

LED

驱动的入口函数,也是

LED

子系统中,硬件设备和驱动程序匹配后,第一个执行的函数。

实现思路

  1. 通过dev_get_platdata检索设备的平台数据,如果平台数据中的LED数量大于零,则使用devm_kzalloc为其分配内存空间,并且使用create_gpio_led进行初始化
  2. 如果平台数据不存在或LED的数量为零,则使用gpio_leds_create创建LED。
  3. 最后,设置驱动程序数据,并返回0,表示操作成功。

数据结构:该函数主要包括了两个数据结构

gpio_led_platform_data

gpio_leds_priv

2、gpio_leds_create分析

2.1 相关数据结构

2.1.1 gpio_led

/* For the leds-gpio driver */
struct gpio_led {
    const char *name;                    // LED名称
    const char *default_trigger;        // 默认触发类型    
    unsigned     gpio;                    // GPIO编号
    unsigned    active_low : 1;            // 低电平有效
    unsigned    retain_state_suspended : 1;
    unsigned    panic_indicator : 1;
    unsigned    default_state : 2;        // 默认状态
    unsigned    retain_state_shutdown : 1;
    /* default_state should be one of LEDS_GPIO_DEFSTATE_(ON|OFF|KEEP) */
    struct gpio_desc *gpiod;            // GPIO Group
};

结构体名称

gpio_led

文件位置

include/linux/leds.h

主要作用

LED

的硬件描述结构,包括名称,

GPIO

编号,有效电平等等信息。

该结构体的信息大多由解析设备树获得,将设备树中

label

解析为

name

gpios

解析为

gpiod

linux,default-trigger

解析为

default_trigger

2.1.2 gpio_led_data

struct gpio_led_data {
    struct led_classdev cdev;        // LED Class
    struct gpio_desc *gpiod;        // GPIO description
    u8 can_sleep;                    
    u8 blinking;                    // 闪烁
    gpio_blink_set_t platform_gpio_blink_set;    // 闪烁设置
};

结构体名称

gpio_led_data

文件位置

drivers/leds/leds-gpio.c

主要作用

LED

相关数据信息,主要在于

led_classdev

,用于注册设备节点信息

由设备树解析出来的

gpio_led

,然后将部分属性赋值到

gpio_led_data

中,并且初始化

led_classdev

相关属性,并且实现

led_classdev

结构体中的部分函数。

2.2 实现流程

staticstructgpio_leds_priv*gpio_leds_create(structplatform_device*pdev){structdevice*dev =&pdev->dev;structfwnode_handle*child;structgpio_leds_priv*priv;int count, ret;

    count =device_get_child_node_count(dev);//    获取子节点数量if(!count)returnERR_PTR(-ENODEV);

    priv =devm_kzalloc(dev,sizeof_gpio_leds_priv(count), GFP_KERNEL);if(!priv)returnERR_PTR(-ENOMEM);device_for_each_child_node(dev, child){structgpio_led_data*led_dat =&priv->leds[priv->num_leds];//    与gpio_leds_priv结构体关联structgpio_led led ={};constchar*state =NULL;structdevice_node*np =to_of_node(child);

        ret =fwnode_property_read_string(child,"label",&led.name);//    读设备树属性,赋值gpio_led结构体if(ret &&IS_ENABLED(CONFIG_OF)&& np)
            led.name = np->name;if(!led.name){fwnode_handle_put(child);returnERR_PTR(-EINVAL);}

        led.gpiod =devm_fwnode_get_gpiod_from_child(dev,NULL, child,
                                 GPIOD_ASIS,
                                 led.name);if(IS_ERR(led.gpiod)){fwnode_handle_put(child);returnERR_CAST(led.gpiod);}fwnode_property_read_string(child,"linux,default-trigger",&led.default_trigger);if(!fwnode_property_read_string(child,"default-state",&state)){if(!strcmp(state,"keep"))
                led.default_state = LEDS_GPIO_DEFSTATE_KEEP;elseif(!strcmp(state,"on"))
                led.default_state = LEDS_GPIO_DEFSTATE_ON;else
                led.default_state = LEDS_GPIO_DEFSTATE_OFF;}if(fwnode_property_present(child,"retain-state-suspended"))
            led.retain_state_suspended =1;if(fwnode_property_present(child,"retain-state-shutdown"))
            led.retain_state_shutdown =1;if(fwnode_property_present(child,"panic-indicator"))
            led.panic_indicator =1;

        ret =create_gpio_led(&led, led_dat, dev, np,NULL);//    将gpio_led结构体、gpio_led_data关联起来if(ret <0){fwnode_handle_put(child);returnERR_PTR(ret);}
        led_dat->cdev.dev->of_node = np;
        priv->num_leds++;}return priv;}

函数介绍

gpio_leds_create

主要用于创建

LED

设备。

实现思路

  1. 通过device_get_child_node_count获取设备树中LED子节点的数量,根据获取到的子节点数量,分配LED设备对应的内存空间
  2. 通过device_for_each_child_node遍历每个子节点,并为每个子节点创建对应的LED设备
  3. 对于每个子节点,使用fwnode_property_read_string接口,读取设备树中相关的属性信息,如:labellinux,default-trigger等,将这些信息赋值给gpio_led结构体中
  4. 最后将遍历的每个LED,调用create_gpio_led进行设备的创建

3、create_gpio_led分析

3.1 相关数据结构

3.1.1 led_classdev

该数据结构属于核心层,在硬件驱动层需要与其进行关联,遂在此介绍。

struct led_classdev {
    const char        *name;
    enum led_brightness     brightness;
    enum led_brightness     max_brightness;
    int             flags;

    /* Lower 16 bits reflect status */
#define LED_SUSPENDED        BIT(0)
#define LED_UNREGISTERING    BIT(1)
    /* Upper 16 bits reflect control information */
#define LED_CORE_SUSPENDRESUME    BIT(16)
#define LED_SYSFS_DISABLE    BIT(17)
#define LED_DEV_CAP_FLASH    BIT(18)
#define LED_HW_PLUGGABLE    BIT(19)
#define LED_PANIC_INDICATOR    BIT(20)
#define LED_BRIGHT_HW_CHANGED    BIT(21)
#define LED_RETAIN_AT_SHUTDOWN    BIT(22)

    /* set_brightness_work / blink_timer flags, atomic, private. */
    unsigned long        work_flags;

#define LED_BLINK_SW            0
#define LED_BLINK_ONESHOT        1
#define LED_BLINK_ONESHOT_STOP        2
#define LED_BLINK_INVERT        3
#define LED_BLINK_BRIGHTNESS_CHANGE     4
#define LED_BLINK_DISABLE        5

    /* Set LED brightness level
     * Must not sleep. Use brightness_set_blocking for drivers
     * that can sleep while setting brightness.
     */
    void        (*brightness_set)(struct led_classdev *led_cdev,
                      enum led_brightness brightness);
    /*
     * Set LED brightness level immediately - it can block the caller for
     * the time required for accessing a LED device register.
     */
    int (*brightness_set_blocking)(struct led_classdev *led_cdev,
                       enum led_brightness brightness);
    /* Get LED brightness level */
    enum led_brightness (*brightness_get)(struct led_classdev *led_cdev);

    /*
     * Activate hardware accelerated blink, delays are in milliseconds
     * and if both are zero then a sensible default should be chosen.
     * The call should adjust the timings in that case and if it can't
     * match the values specified exactly.
     * Deactivate blinking again when the brightness is set to LED_OFF
     * via the brightness_set() callback.
     */
    int        (*blink_set)(struct led_classdev *led_cdev,
                     unsigned long *delay_on,
                     unsigned long *delay_off);

    struct device        *dev;
    const struct attribute_group    **groups;

    struct list_head     node;            /* LED Device list */
    const char        *default_trigger;    /* Trigger to use */

    unsigned long         blink_delay_on, blink_delay_off;
    struct timer_list     blink_timer;
    int             blink_brightness;
    int             new_blink_brightness;
    void            (*flash_resume)(struct led_classdev *led_cdev);

    struct work_struct    set_brightness_work;
    int            delayed_set_value;

#ifdef CONFIG_LEDS_TRIGGERS
    /* Protects the trigger data below */
    struct rw_semaphore     trigger_lock;

    struct led_trigger    *trigger;
    struct list_head     trig_list;
    void            *trigger_data;
    /* true if activated - deactivate routine uses it to do cleanup */
    bool            activated;
#endif

#ifdef CONFIG_LEDS_BRIGHTNESS_HW_CHANGED
    int             brightness_hw_changed;
    struct kernfs_node    *brightness_hw_changed_kn;
#endif

    /* Ensures consistent access to the LED Flash Class device */
    struct mutex        led_access;
};

结构体名称

led_classdev

文件位置

include/linux/leds.h

主要作用:该结构体所包括的内容较多,主要有以下几个功能

  • brightness当前亮度值,max_brightness最大亮度
  • LED闪烁功能控制:blink_timerblink_brightnessnew_blink_brightness
  • attribute_group:创建sysfs文件节点,向上提供用户访问接口

由上面可知,在创建

gpio_led_data

时,顺便初始化

led_classdev

结构体,赋值相关属性以及部分回调函数,最终将

led_classdev

注册进入

LED

子系统框架中,在

sysfs

中创建对应的文件节点。

3.2 实现流程

static int create_gpio_led(const struct gpio_led *template,
    struct gpio_led_data *led_dat, struct device *parent,
    struct device_node *np, gpio_blink_set_t blink_set)
{
    int ret, state;

    led_dat->gpiod = template->gpiod;
    if (!led_dat->gpiod) {
        /*
         * This is the legacy code path for platform code that
         * still uses GPIO numbers. Ultimately we would like to get
         * rid of this block completely.
         */
        unsigned long flags = GPIOF_OUT_INIT_LOW;

        /* skip leds that aren't available */
        if (!gpio_is_valid(template->gpio)) {                                //    判断是否gpio合法
            dev_info(parent, "Skipping unavailable LED gpio %d (%s)\n",
                    template->gpio, template->name);
            return 0;
        }

        if (template->active_low)
            flags |= GPIOF_ACTIVE_LOW;

        ret = devm_gpio_request_one(parent, template->gpio, flags,
                        template->name);
        if (ret < 0)
            return ret;

        led_dat->gpiod = gpio_to_desc(template->gpio);                        //    获取gpio组
        if (!led_dat->gpiod)
            return -EINVAL;
    }

    led_dat->cdev.name = template->name;                                    //    赋值一些属性信息
    led_dat->cdev.default_trigger = template->default_trigger;
    led_dat->can_sleep = gpiod_cansleep(led_dat->gpiod);
    if (!led_dat->can_sleep)
        led_dat->cdev.brightness_set = gpio_led_set;                        //    设置LED
    else
        led_dat->cdev.brightness_set_blocking = gpio_led_set_blocking;
    led_dat->blinking = 0;
    if (blink_set) {
        led_dat->platform_gpio_blink_set = blink_set;
        led_dat->cdev.blink_set = gpio_blink_set;
    }
    if (template->default_state == LEDS_GPIO_DEFSTATE_KEEP) {
        state = gpiod_get_value_cansleep(led_dat->gpiod);
        if (state < 0)
            return state;
    } else {
        state = (template->default_state == LEDS_GPIO_DEFSTATE_ON);
    }
    led_dat->cdev.brightness = state ? LED_FULL : LED_OFF;
    if (!template->retain_state_suspended)
        led_dat->cdev.flags |= LED_CORE_SUSPENDRESUME;
    if (template->panic_indicator)
        led_dat->cdev.flags |= LED_PANIC_INDICATOR;
    if (template->retain_state_shutdown)
        led_dat->cdev.flags |= LED_RETAIN_AT_SHUTDOWN;

    ret = gpiod_direction_output(led_dat->gpiod, state);
    if (ret < 0)
        return ret;

    return devm_of_led_classdev_register(parent, np, &led_dat->cdev);        //    将LED设备注册到子系统中
}

函数介绍

create_gpio_led

创建

LED

设备的核心函数

实现思路

  1. 先通过gpio_is_valid接口,判断GPIO是否合法
  2. 将上层从设备树解析出来的信息,填充到gpio_led_data字段中,并且初始化部分字段,如:led_classdevgpio_desc
  3. 填充回调函数,实现相应的动作,如:gpio_led_setgpio_led_set_blockinggpio_blink_set
  4. 最后调用devm_of_led_classdev_register接口,将LED设备注册到LED框架之中。

4、回调函数分析

硬件驱动层,肯定包括最终操作硬件的部分,也就是上面提到的一些回调函数,属于我们驱动工程师开发的内容。

4.1 gpio_blink_set

static int gpio_blink_set(struct led_classdev *led_cdev,
    unsigned long *delay_on, unsigned long *delay_off)
{
    struct gpio_led_data *led_dat = cdev_to_gpio_led_data(led_cdev);

    led_dat->blinking = 1;
    return led_dat->platform_gpio_blink_set(led_dat->gpiod, GPIO_LED_BLINK,
                        delay_on, delay_off);
}

函数介绍

gpio_blink_set

主要用于设置闪烁的时延

4.2 gpio_led_set 和gpio_led_set_blocking

staticinlinestructgpio_led_data*cdev_to_gpio_led_data(structled_classdev*led_cdev){returncontainer_of(led_cdev,structgpio_led_data, cdev);}staticvoidgpio_led_set(structled_classdev*led_cdev,enumled_brightness value){structgpio_led_data*led_dat =cdev_to_gpio_led_data(led_cdev);int level;if(value == LED_OFF)
        level =0;else
        level =1;if(led_dat->blinking){
        led_dat->platform_gpio_blink_set(led_dat->gpiod, level,NULL,NULL);
        led_dat->blinking =0;}else{if(led_dat->can_sleep)gpiod_set_value_cansleep(led_dat->gpiod, level);elsegpiod_set_value(led_dat->gpiod, level);}}staticintgpio_led_set_blocking(structled_classdev*led_cdev,enumled_brightness value){gpio_led_set(led_cdev, value);return0;}

函数介绍

gpio_led_set

gpio_led_set_blocking

主要用于设置亮度,区别在于

gpio_led_set

是不可睡眠的,

gpio_led_set_blocking

是可休眠的。

5、总结

上面我们了解了硬件驱动层的实现流程以及相关数据结构,总结来看:

5.1 数据结构之间的关系如下

在这里插入图片描述

5.2 函数实现流程如下

gpio_led_probe(drivers/leds/leds-gpio.c)
    |--> gpio_leds_create
        |--> create_gpio_led            //  创建LED设备
            |--> devm_of_led_classdev_register      

5.3 主要作用如下

  1. 从设备树获取LED相关属性信息,赋值给gpio_led结构体
  2. gpio_ledgpio_leds_privled_classdev等数据结构关联起来
  3. LED设备注册进入LED子系统中

img

点赞+关注,永远不迷路

img


本文转载自: https://blog.csdn.net/dong__ge/article/details/130313894
版权归原作者 卍一十二画卍 所有, 如有侵权,请联系我们删除。

“【社区图书馆】二、LED子系统——硬件驱动层”的评论:

还没有评论