0


重学SpringBoot3-Spring WebFlux之Reactor核心概念

重学SpringBoot3-Spring WebFlux之Reactor核心概念

随着 Web 应用和分布式系统的复杂性不断增加,传统的同步编程模型逐渐暴露出难以应对高并发、高吞吐量需求的局限性。Java 在 8 之后引入了大量新特性,包括响应式编程的出现。Reactor 是 Java 世界中实现响应式编程的一个重要库,它与 Spring WebFlux 紧密集成,并且构建在 Java 的

Reactive Streams

标准之上。

本文将详细介绍 Java 响应式编程的基本概念,并深入解读 Reactor 核心 API 和使用场景。


1. 响应式编程简介

响应式编程是一种声明式编程范式,它可以轻松处理异步数据流。在传统的同步编程中,我们通常等待数据的返回,阻塞程序执行。而在响应式编程中,程序的执行是事件驱动的,通过回调机制处理数据,显著提升系统的响应效率,尤其适合处理 I/O 密集型的应用场景。

响应式编程的核心特性包括:

  • 异步非阻塞:系统不等待操作完成,而是通过事件触发进行回调。
  • 流式处理:通过声明式的方式操作数据流。
  • 背压(Backpressure):处理生产者和消费者速率不匹配的问题,避免系统过载。

Reactor 是 Java 世界响应式编程的代表库之一,它基于

Reactive Streams

规范,提供强大且高效的响应式编程工具。


2. Reactive Streams 规范

在深入探讨 Reactor 之前,必须了解

Reactive Streams

。它是 Java 响应式编程的一项规范,定义了以下四个核心接口:

  • Publisher:发布者,负责产生数据流。
  • Subscriber:订阅者,负责消费数据流。
  • Subscription:订阅,连接发布者和订阅者,控制数据流的速率和背压。
  • Processor:既是发布者,也是订阅者,用于数据流的中间处理。

Reactor 库正是基于

Reactive Streams

规范进行实现的。


3. Reactor 核心概念

Reactor 是 Spring 团队开发的响应式库,核心提供两个基础的反应式类型:

  • Mono:表示 0 或 1 个元素的异步处理。
  • Flux:表示 0 到 N 个元素的异步处理。

它们都是响应式流的抽象,背后提供丰富的操作符(如

map

filter

flatMap

等),以声明式的方式处理流数据。

3.1 导入依赖

<dependency><groupId>io.projectreactor</groupId><artifactId>reactor-core</artifactId></dependency>

3.2 Mono

Mono

代表一个异步的单值或空结果。它非常适合处理只需返回单个数据的异步操作,如数据库查询、网络请求等。

Mono<String> mono =Mono.just("Hello, Reactor!");// 订阅并处理数据
mono.subscribe(System.out::println);

Mono.just

在上面的例子中,

Mono.just

创建了一个只包含单个字符串

"Hello, Reactor!"

Mono

对象。通过

subscribe()

方法订阅,结果会被打印。

常见操作符:

  • **Mono.just(value)**:创建包含单个数据的 Mono。
  • **Mono.empty()**:创建一个不包含数据的 Mono。
  • **Mono.error(Throwable)**:创建一个以错误结束的 Mono。
  • **Mono.delay(Duration)**:延迟一段时间后发布信号。

异步例子:

Mono<String> delayedMono =Mono.delay(Duration.ofSeconds(1)).thenReturn("Hello after delay");

delayedMono.subscribe(System.out::println);
Mono.delay

会在5秒钟后发布一个信号,之后

thenReturn

返回一个

"Hello after delay"

字符串。

Mono.delay

3.3 Flux

Flux

表示 0 到 N 个元素的异步流,适用于处理列表、流数据等场景。它可以从集合、流、范围等多种来源创建。

Flux<Integer> flux =Flux.just(1,2,3,4,5);

flux.subscribe(System.out::println);

在上面的例子中,

Flux.just

创建了一个包含 1 到 5 的

Flux

对象,

subscribe

将依次输出这些元素。

Flux.just

常见操作符:

  • **Flux.just(value1, value2, …)**:创建包含多个数据的 Flux。
  • **Flux.fromIterable(Iterable)**:从集合或其他可迭代的数据源创建 Flux。
  • **Flux.range(int start, int count)**:创建一个包含一定范围整数的 Flux。
  • **Flux.interval(Duration)**:创建一个按时间间隔发布信号的 Flux。

异步例子:

Flux<Long> flux =Flux.interval(Duration.ofSeconds(1)).take(5);

flux.subscribe(System.out::println);
Flux.interval

每隔一秒发布一个递增的 Long 值,

take(5)

表示只获取前 5 个元素。

Flux.interval


4. 背压(Backpressure)

背压是 Reactor 中一个重要的概念,旨在处理生产者和消费者速率不匹配的问题。当消费者无法跟上生产者的速度时,背压机制通过通知生产者暂停、丢弃数据或缓冲数据,防止系统崩溃。

Reactor 通过

Subscription

request(n)

实现背压,允许订阅者控制从生产者拉取数据的速率。

示例:

Flux<Integer> flux =Flux.range(1,10);

flux.subscribe(newSubscriber<Integer>(){privateSubscription subscription;@OverridepublicvoidonSubscribe(Subscription subscription){this.subscription = subscription;
        subscription.request(1);// 每次请求一个元素}@OverridepublicvoidonNext(Integer integer){System.out.println("Received: "+ integer);
        subscription.request(1);// 处理完后再请求下一个}@OverridepublicvoidonError(Throwable t){
        t.printStackTrace();}@OverridepublicvoidonComplete(){System.out.println("All items processed");}});

在这个例子中,订阅者通过

request(1)

实现背压,每次只请求一个元素并处理,处理完再请求下一个,避免生产者过快地推送数据。

背压


5. 异常处理

在响应式流中,处理错误也是非常重要的一部分。Reactor 提供了几种方法来捕获和处理流中的异常:

  • onErrorReturn:发生错误时,返回一个默认值。
  • onErrorResume:发生错误时,切换到另一个流。
  • doOnError:发生错误时,执行某个操作,但不改变流的内容。

示例:

Flux<String> flux =Flux.just("a","b","c").concatWith(Flux.just("d","e")).concatWith(Flux.error(newRuntimeException("Error occurred"))).concatWithValues("f","g").onErrorReturn("default");
flux.subscribe(System.out::println);

在这个例子中,当遇到错误时,使用

onErrorReturn

返回一个默认值,后面的数据不在处理。

image-20241019230036191


6. 请求重塑

在响应式编程中,请求重塑(Reshape Requests)是指通过操作符对数据流进行转换或重构,以适应业务需求。在 Reactor 中,我们可以通过使用多个操作符对数据进行操作,比如

flatMap

map

buffer

等,从而实现对数据流的重塑。

以下是一个例子,展示如何通过

flatMap

buffer

重新组合流数据。假设我们有一组用户 ID,并且我们想为每个用户 ID 发起异步请求获取用户信息,同时我们想把结果分批处理。

importreactor.core.publisher.Flux;importreactor.core.publisher.Mono;importjava.time.Duration;importjava.util.Arrays;importjava.util.List;publicclassReshapeRequestsExample{publicstaticvoidmain(String[] args){// 假设我们有一组用户IDList<Integer> userIds =Arrays.asList(1,2,3,4,5,6,7,8,9,10);// 创建Flux流Flux<Integer> userIdFlux =Flux.fromIterable(userIds);// 将用户ID进行分批处理,假设每次批量处理3个
        userIdFlux
            .buffer(3)// 每3个元素打包成一个List.flatMap(userBatch ->{System.out.println("Processing batch: "+ userBatch);// 对每一批用户ID发起并行请求,返回一个Mono<List<User>>returnFlux.fromIterable(userBatch).flatMap(userId ->fetchUserById(userId))// 模拟异步获取用户数据.collectList();// 将Flux<User>转换为Mono<List<User>>}).doOnNext(users ->{// 对获取到的用户数据进行处理System.out.println("Received users: "+ users);}).subscribe();}// 模拟通过ID获取用户信息的异步请求privatestaticMono<String>fetchUserById(Integer userId){returnMono.just("User-"+ userId)// 假设每个用户的数据就是 "User-X".delayElement(Duration.ofMillis(500));// 模拟异步请求延迟}}

代码解析:

  1. 数据流创建:使用 Flux.fromIterable 将用户 ID 的集合转为一个 Flux 流。这个流将以异步方式处理每个用户 ID。
  2. **分批处理 (buffer)**:使用 buffer(3) 操作符将数据流重新打包,每 3 个元素构成一个 List。这样可以模拟一次处理 3 个用户 ID 的场景。
  3. **异步请求 (flatMap)**:使用 flatMap 对每批用户 ID 发起异步请求。flatMap 可以将原始的 Flux<List<Integer>> 转换为 Flux<User>,再通过 collectList() 把处理结果重新打包为 Mono<List<User>>
  4. 模拟请求延迟fetchUserById 模拟一个延迟的异步请求,每 500 毫秒返回一个结果。这个模拟了通过网络请求获取用户信息的过程。
  5. 处理与订阅:通过 doOnNext 对每次处理的批次用户信息进行输出,然后通过 subscribe() 进行订阅,触发数据流处理。

请求重塑

7. 小结

Reactor 作为 Java 响应式编程的核心工具,提供了强大且灵活的 API 来处理异步数据流。通过 Mono 和 Flux,可以轻松处理单个或多个元素的数据流。响应式编程的异步非阻塞特性和背压机制使其成为构建高性能、可扩展系统的理想选择。

在未来的文章中,我们将探讨 Reactor 的更多高级特性以及如何与 Spring WebFlux 集成,构建现代化的响应式 Web 应用。


本文转载自: https://blog.csdn.net/u014390502/article/details/143086822
版权归原作者 CoderJia_ 所有, 如有侵权,请联系我们删除。

“重学SpringBoot3-Spring WebFlux之Reactor核心概念”的评论:

还没有评论