0


ES filter查询 高亮查询 聚合查询

filter查询

query,根据你的查询条件,去计算文档的匹配度得到一个分数,并且根据分数进行排序,不会做缓存的。

filter,根据你的查询条件去查询文档,不去计算分数,而且filter会对经常被过滤的数据进行缓存。

# filter查询
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "corpName": "盒马鲜生"
          }
        },
        {
          "range": {
            "fee": {
              "lte": 4
            }
          }
        }
      ]
    }
  }
}
// Java实现filter操作
@Test
public void filter() throws IOException {
    //1. SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 查询条件
    SearchSourceBuilder builder = new SearchSourceBuilder();
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    boolQuery.filter(QueryBuilders.termQuery("corpName","盒马鲜生"));
    boolQuery.filter(QueryBuilders.rangeQuery("fee").lte(5));

    builder.query(boolQuery);
    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 输出结果
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getSourceAsMap());
    }

}

高亮查询

高亮查询就是你用户输入的关键字,以一定的特殊样式展示给用户,让用户知道为什么这个结果被检索出来。

高亮展示的数据,本身就是文档中的一个Field,单独将Field以highlight的形式返回给你。

ES提供了一个highlight属性,和query同级别的。

  • fragment_size:指定高亮数据展示多少个字符回来。
  • pre_tags:指定前缀标签,举个栗子< font color="red" >
  • post_tags:指定后缀标签,举个栗子< /font >
  • fields:指定哪几个Field以高亮形式返回

**RESTful实现 **

# highlight查询
POST /sms-logs-index/sms-logs-type/_search
{
  "query": {
    "match": {
      "smsContent": "盒马"
    }
  },
  "highlight": {
    "fields": {
      "smsContent": {}
    },
    "pre_tags": "<font color='red'>",
    "post_tags": "</font>",
    "fragment_size": 10
  }
}
/ Java实现高亮查询
@Test
public void highLightQuery() throws IOException {
    //1. SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定查询条件(高亮)
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //2.1 指定查询条件
    builder.query(QueryBuilders.matchQuery("smsContent","盒马"));
    //2.2 指定高亮
    HighlightBuilder highlightBuilder = new HighlightBuilder();
    highlightBuilder.field("smsContent",10)
            .preTags("<font color='red'>")
            .postTags("</font>");
    builder.highlighter(highlightBuilder);

    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 获取高亮数据,输出
    for (SearchHit hit : resp.getHits().getHits()) {
        System.out.println(hit.getHighlightFields().get("smsContent"));
    }
}

聚合查询

ES的聚合查询和MySQL的聚合查询类似,ES的聚合查询相比MySQL要强大的多,ES提供的统计数据的方式多种多样。

**下图名字可以随便起 **

# ES聚合查询的RESTful语法
POST /index/type/_search
{
    "aggs": {
        "名字(agg)": {
            "agg_type": {
                "属性": "值"
            }
        }
    }
}

去重计数查询

去重计数,即Cardinality,第一步先将返回的文档中的一个指定的field进行去重,统计一共有多少条

# 去重计数查询 北京 上海 武汉 山西
POST /sms-logs-index/sms-logs-type/_search
{
  "aggs": {
    "agg": {
      "cardinality": {
        "field": "province"
      }
    }
  }
}

//  Java代码实现去重计数查询
@Test
public void cardinality() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定使用的聚合查询方式
    SearchSourceBuilder builder = new SearchSourceBuilder();
    builder.aggregation(AggregationBuilders.cardinality("agg").field("province"));

    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 获取返回结果
    Cardinality agg = resp.getAggregations().get("agg");
    long value = agg.getValue();
    System.out.println(value);
}

范围统计

统计一定范围内出现的文档个数,比如,针对某一个Field的值在 0100,100200,200~300之间文档出现的个数分别是多少。

范围统计可以针对普通的数值,针对时间类型,针对ip类型都可以做相应的统计。

range,date_range,ip_range

数值统计

# 数值方式范围统计
POST /sms-logs-index/sms-logs-type/_search
{
  "aggs": {
    "agg": {
      "range": {
        "field": "fee",
        "ranges": [
          {
            "to": 5
          },
          {
            "from": 5,    # from有包含当前值的意思  
            "to": 10
          },
          {
            "from": 10
          }
        ]
      }
    }
  }
}
# 时间方式范围统计
POST /sms-logs-index/sms-logs-type/_search
{
  "aggs": {
    "agg": {
      "date_range": {
        "field": "createDate",
        "format": "yyyy", 
        "ranges": [
          {
            "to": 2000
          },
          {
            "from": 2000
          }
        ]
      }
    }
  }
}
# ip方式 范围统计
POST /sms-logs-index/sms-logs-type/_search
{
  "aggs": {
    "agg": {
      "ip_range": {
        "field": "ipAddr",
        "ranges": [
          {
            "to": "10.126.2.9"
          },
          {
            "from": "10.126.2.9"
          }
        ]
      }
    }
  }
}

from表示包含当前值得意思 上图表示0-5 ,5-10 (包含5不含10),10以上(包含10)

// Java实现数值 范围统计
@Test
public void range() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定使用的聚合查询方式
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //---------------------------------------------
    builder.aggregation(AggregationBuilders.range("agg").field("fee")
                                        .addUnboundedTo(5)
                                        .addRange(5,10)
                                        .addUnboundedFrom(10));
    //---------------------------------------------
    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 获取返回结果
    Range agg = resp.getAggregations().get("agg");
    for (Range.Bucket bucket : agg.getBuckets()) {
        String key = bucket.getKeyAsString();
        Object from = bucket.getFrom();
        Object to = bucket.getTo();
        long docCount = bucket.getDocCount();
        System.out.println(String.format("key:%s,from:%s,to:%s,docCount:%s",key,from,to,docCount));
    }
}

统计聚合查询

他可以帮你查询指定Field的最大值,最小值,平均值,平方和等

使用:extended_stats

# 统计聚合查询
POST /sms-logs-index/sms-logs-type/_search
{
  "aggs": {
    "agg": {
      "extended_stats": {
        "field": "fee"
      }
    }
  }
}

// Java实现统计聚合查询
@Test
public void extendedStats() throws IOException {
    //1. 创建SearchRequest
    SearchRequest request = new SearchRequest(index);
    request.types(type);

    //2. 指定使用的聚合查询方式
    SearchSourceBuilder builder = new SearchSourceBuilder();
    //---------------------------------------------
    builder.aggregation(AggregationBuilders.extendedStats("agg").field("fee"));
    //---------------------------------------------
    request.source(builder);

    //3. 执行查询
    SearchResponse resp = client.search(request, RequestOptions.DEFAULT);

    //4. 获取返回结果
    ExtendedStats agg = resp.getAggregations().get("agg");
    double max = agg.getMax();
    double min = agg.getMin();
    System.out.println("fee的最大值为:" + max + ",最小值为:" + min);
}

本文转载自: https://blog.csdn.net/weixin_60934893/article/details/128047230
版权归原作者 高冷大猛男 所有, 如有侵权,请联系我们删除。

“ES filter查询 高亮查询 聚合查询”的评论:

还没有评论