0


STM32两轮平衡小车原理详解(开源)

一、引言

关于STM32两轮平衡车的设计,我想在读者阅读本文之前应该已经有所了解,所以本文的重点是代码的分享和分析。至于具体的原理,我觉得读者不必阅读长篇大论的文章,只需按照本文分享的代码自己亲手制作一辆平衡车,其原理并不言而喻了。源完整代码工程在文章末尾百度网盘链接,请需要的读者自行下载即可。

另外,由于平衡车的精髓在于PID算法的运用,有需要了解PID算法的读者可以参考以下两篇文章:

PID算法详解(代码详解篇),位置式PID、增量式PID(通用)_pid 代码-CSDN博客

PID算法详解(精华知识汇总)_小小_扫地僧的博客-CSDN博客

二、所需材料

1、STM32F03C8T6

2、MPU6050

3、蓝牙模块

4、编码电机

5、TB6612

6、电源+稳压模块

7、OLED显示模块

三、接线强调

1、TB6612接线

2、蓝牙模块与单片机之间

**单片机 ** 蓝牙模块

** TX ——> RX **

** RX ——> TX **

**3、MPU6050 **

使用IIC通信,所以对照代码接SDA、SCL、GND、VCC、IN(中断触发线)

四、功能介绍

1、两轮平衡直立

2、蓝牙APP控制运动状态

3、遥控手柄控制

4、超声波避障

五、关键算法

PID算法对编码电机的控制

1.位置闭环控制

    位置闭环控制就是根据编码器的脉冲累加测量电机的位置信息,并与目标值进行比较,得到控制偏差,然后通过对偏差的**比例、积分、微分**进行控制,**使偏差趋向于零的过程**。 位置闭环控制就是根据编码器的脉冲累加测量电机的位置信息,并与目标值进行比较,得到控制偏差,然后通过对偏差的比例、积分、微分进行控制,使偏差趋向于零的过程.

1.1理论分析

**1.2控制原理图 **

**1.3C语言实现 **

int Position_PID (int Encoder, int Target)
{
    static float Bias, Pwm,Integral_bias,Last_Bias;
    Bias=Encoder-Target;//计算偏差
    Integral_bias+=Bias; //求出偏差的积分
    Pwm=Position_KP*Bias+Position_KI*Integral_bias+Position_KD*(Bias-Last_Bias);Last_Bias=Bias;  //保存上一次偏差
    return Pwm; //输出
}
   

入口参数为编码器的位置测量值和位置控制的目标值,返回值为电机控制PWM(现在再看一下上面的控制原理图是不是更加容易明白了)。
第一行是相关内部变量的定义。
第二行是求出速度偏差,由测量值减去目标值。第三行通过累加求出偏差的积分。
第四行使用位置式PID控制器求出电机 PWM。第五行保存上一次偏差,便于下次调用。最后一行是返回。
然后,在定时中断服务函数里面调用该函数实现我们的控制目标:Moto=Position_PID(Encoder, Target_Position);
Set_Pwm(Moto) ;//===赋值给PWM寄存器

2、速度闭环控制

速度闭环控制就是根据单位时间获取的脉冲数(这里使用了M法测速)测量电机的速度信息,并与目标值进行比较,得到控制偏差,然后通过对偏差的比例、积分、微分进行控制,使偏差趋向于零的过程。
一些PID的要点在位置控制中已经有讲解,这里不再赘叙。
需要说明的是,这里速度控制20ms一次,一般建议10ms或者5ms,因为在这里电机是使用USB供电,速度比较慢,20ms可以延长获取速度的单位时间,提高编码器的采值。

** 2.1理论分析**

根据增量式离散PID公式 根据增量式离散PID公式
Pwm+=Kp[e(k)-e(k-1)]+Ki*e(k)+Kd[e(k)-2e(k-1)+e(k-2)]
e(k):本次偏差
e(k-1):上一次的偏差e (k-2):上上次的偏差
Pwm 代表增量输出

在我们的速度控制闭环系统里面只使用PI控制,因此对PID控制器可简化为以下公式:
Pwm+=Kp[e(k)-e(k-1)]+Ki*e(k)

2.2 控制原理图

2.3 C语言实现

增量式PI控制器具体通过C语言实现的代码如下:

int Incremental_PI (int Encoder,int Target)
{
    static float Bias, Pwm, Last_bias;
    Bias=Encoder-Target;//计算偏差
    Pwm+=Velocity_KP*(Bias-Last_bias)+Velocity_KI*Bias;//增量式PI控制器
    Last_bias=Bias;//保存上一次偏差
    return Pwm;//增量输出
}

入口参数为编码器的速度测量值和速度控制的目标值,返回值为电机控制PWM。
第一行是相关内部变量的定义。
第二行是求出速度偏差,由测量值减去目标值。第三行使用增量PI控制器求出电机PWM。
第四行保存上一次偏差,便于下次调用。最后一行是返回。
然后,在定时中断服务函数里面调用该函数实现我们的控制目标:

Moto=Incremental_PI(Encoder, Target_Velocity);Set_Pwm(Moto);//===赋值给对应MCU的PWM寄存器

六、关键代码分析

1、编码电机PID算法控制

#include "control.h"
#include "usart2.h"

/**************************************************************************
函数功能:所有的控制代码都在这里面
         5ms定时中断由MPU6050的INT引脚触发
         严格保证采样和数据处理的时间同步    
                 在MPU6050的采样频率设置中,设置成100HZ,即可保证6050的数据是10ms更新一次。
                 读者可在imv_mpu.h文件第26行的宏定义进行修改(#define DEFAULT_MPU_HZ  (100))
**************************************************************************/
#define SPEED_Y 100 //俯仰(前后)最大设定速度
#define SPEED_Z 80//偏航(左右)最大设定速度 

int Balance_Pwm,Velocity_Pwm,Turn_Pwm,Turn_Kp;

float Mechanical_angle=8; 
float Target_Speed=0;    //期望速度(俯仰)。用于控制小车前进后退及其速度。
float Turn_Speed=0;        //期望速度(偏航)

//针对不同车型参数,在sys.h内设置define的电机类型
float balance_UP_KP=BLC_KP;      // 小车直立环PD参数
float balance_UP_KD=BLC_KD;

float velocity_KP=SPD_KP;     // 小车速度环PI参数
float velocity_KI=SPD_KI;

float Turn_Kd=TURN_KD;//转向环KP、KD
float Turn_KP=TURN_KP;

void EXTI9_5_IRQHandler(void) 
{
    static u8 Voltage_Counter=0;
    if(PBin(5)==0)
    {
        EXTI->PR=1<<5;                                          //清除LINE5上的中断标志位   
        mpu_dmp_get_data(&pitch,&roll,&yaw);                    //得到欧拉角(姿态角)的数据
        MPU_Get_Gyroscope(&gyrox,&gyroy,&gyroz);                //得到陀螺仪数据
        Encoder_Left=Read_Encoder(2);                           //读取编码器的值,保证输出极性一致
        Encoder_Right=-Read_Encoder(3);                         //读取编码器的值
        Led_Flash(100);
        
        Voltage_Counter++;
        if(Voltage_Counter==20)                                 //100ms读取一次电压
        {
            Voltage_Counter=0;
            Voltage=Get_battery_volt();                            //读取电池电压
        }
        
        if(KEY_Press(100))                                        //长按按键切换模式并触发模式切换初始化
        {
            if(++CTRL_MODE>=101) 
                CTRL_MODE=97;
            Mode_Change=1;
        }
        
        Get_RC();
            
        Target_Speed=Target_Speed>SPEED_Y?SPEED_Y:(Target_Speed<-SPEED_Y?(-SPEED_Y):Target_Speed);//限幅
        Turn_Speed=Turn_Speed>SPEED_Z?SPEED_Z:(Turn_Speed<-SPEED_Z?(-SPEED_Z):Turn_Speed);//限幅( (20*100) * 100)
            
        Balance_Pwm =balance_UP(pitch,Mechanical_angle,gyroy);                               //===直立环PID控制    
        Velocity_Pwm=velocity(Encoder_Left,Encoder_Right,Target_Speed);       //===速度环PID控制     
        Turn_Pwm =Turn_UP(gyroz,Turn_Speed);                                  //===转向环PID控制
        Moto1=Balance_Pwm-Velocity_Pwm+Turn_Pwm;                              //===计算左轮电机最终PWM
        Moto2=Balance_Pwm-Velocity_Pwm-Turn_Pwm;                              //===计算右轮电机最终PWM
        Xianfu_Pwm();                                                            //===PWM限幅
        Turn_Off(pitch,12);                                                      //===检查角度以及电压是否正常
        Set_Pwm(Moto1,Moto2);                                                 //===赋值给PWM寄存器  
    }
}

/**************************************************************************
函数功能:直立PD控制
入口参数:角度、机械平衡角度(机械中值)、角速度
返回  值:直立控制PWM
**************************************************************************/
int balance_UP(float Angle,float Mechanical_balance,float Gyro)
{  
   float Bias;
     int balance;
     Bias=Angle-Mechanical_balance;                                 //===求出平衡的角度中值和机械相关
     balance=balance_UP_KP*Bias+balance_UP_KD*Gyro;              //===计算平衡控制的电机PWM  PD控制   kp是P系数 kd是D系数 
     return balance;
}

/**************************************************************************
函数功能:速度PI控制
入口参数:电机编码器的值
返回  值:速度控制PWM
**************************************************************************/
int velocity(int encoder_left,int encoder_right,int Target_Speed)
{  
    static float Velocity,Encoder_Least,Encoder;
      static float Encoder_Integral;
   //=============速度PI控制器=======================//    
        Encoder_Least =(Encoder_Left+Encoder_Right);//-target;              //===获取最新速度偏差==测量速度(左右编码器之和)-目标速度 
        Encoder *= 0.8;                                                        //===一阶低通滤波器       
        Encoder += Encoder_Least*0.2;                                        //===一阶低通滤波器    
        Encoder_Integral +=Encoder;                                         //===积分出位移 积分时间:10ms
        Encoder_Integral=Encoder_Integral - Target_Speed;                   //===接收遥控器数据,控制前进后退
        if(Encoder_Integral>10000)      Encoder_Integral=10000;             //===积分限幅
        if(Encoder_Integral<-10000)        Encoder_Integral=-10000;            //===积分限幅    
        Velocity=Encoder*velocity_KP+Encoder_Integral*velocity_KI;          //===速度控制    
      if(pitch<-40||pitch>40)             Encoder_Integral=0;                 //===电机关闭后清除积分
      return Velocity;
}
/**************************************************************************
函数功能:转向PD控制
入口参数:电机编码器的值、Z轴角速度
返回  值:转向控制PWM
**************************************************************************/

int Turn_UP(int gyro_Z, int RC)
{
    int PWM_out;
        /*转向约束*/
    if(RC==0)
        Turn_Kd=TURN_KD;                                              //若无左右转向指令,则开启转向约束
    else 
        Turn_Kd=0;                                                    //若左右转向指令接收到,则去掉转向约束
    
    PWM_out=Turn_Kd*gyro_Z + Turn_KP*RC;
    return PWM_out;
}

void Tracking()
{
    TkSensor=0;
    TkSensor+=(C1<<3);
    TkSensor+=(C2<<2);
    TkSensor+=(C3<<1);
    TkSensor+=C4;
}
void Get_RC()
{
    static u8 SR04_Counter =0;
    static float RATE_VEL = 1;
    float RATE_TURN = 1.6;
    float LY,RX;      //PS2手柄控制变量
    int Yuzhi=2;          //PS2控制防抖阈值
    switch(CTRL_MODE)
    {
        case 97:
            SR04_Counter++;
            if(SR04_Counter>=20)                                             //100ms读取一次超声波的数据
            {
                SR04_Counter=0;
                SR04_StartMeasure();                                                 //读取超声波的值
            }
            if(SR04_Distance<=30)                
            {
                Target_Speed=0,Turn_Speed=40;
            }
            else
            {
                Target_Speed=30,Turn_Speed=0;
            }
            break;
            
        case 98://蓝牙模式
            if((Fore==0)&&(Back==0))
                Target_Speed=0;//未接受到前进后退指令-->速度清零,稳在原地
            if(Fore==1)
                Target_Speed--;//前进1标志位拉高-->需要前进
            if(Back==1)
                Target_Speed++;//
            /*左右*/
            if((Left==0)&&(Right==0))
                Turn_Speed=0;
            if(Left==1)
                Turn_Speed-=30;    //左转
            if(Right==1)
                Turn_Speed+=30;    //右转
            break;
            
        case 99://循迹模式
            Tracking();
            switch(TkSensor)
            {
                case 15:
                    Target_Speed=0;
                    Turn_Speed=0;
                    break;
                
                case 9:
                    Target_Speed--;
                    Turn_Speed=0;
                    break;
                
                case 2://向右转
                    Target_Speed--;
                    Turn_Speed=15;
                    break;
                
                case 4://向左转
                    Target_Speed--;
                    Turn_Speed=-15;
                    break;
                
                case 8:
                    Target_Speed=-10;
                    Turn_Speed=-80;
                    break;
                
                case 1:
                    Target_Speed=-10;
                    Turn_Speed=80;
                    break;
            }
            break;
            
        case 100://PS2手柄遥控
            if(PS2_Plugin)
            {
                LY=PS2_LY-128; //获取偏差
                RX=PS2_RX-128; //获取偏差
                if(LY>-Yuzhi&&LY<Yuzhi)
                    LY=0; //设置小角度的死区
                if(RX>-Yuzhi&&RX<Yuzhi)
                    RX=0; //设置小角度的死区
                if(Target_Speed>-LY/RATE_VEL) 
                    Target_Speed--;
                else if(Target_Speed<-LY/RATE_VEL) 
                    Target_Speed++;
                Turn_Speed=RX/RATE_TURN;
            }
            else
            {
                Target_Speed=0,Turn_Speed=0;
            }
        break;
    }
}

2、编码电机编码值采集

#include "encoder.h"

/**************************************************************************
函数功能:把TIM2初始化为编码器接口模式
入口参数:无
返回  值:无
**************************************************************************/
void Encoder_Init_TIM2(void)
{
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;  
  TIM_ICInitTypeDef TIM_ICInitStructure;  
  GPIO_InitTypeDef GPIO_InitStructure;
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);//使能定时器4的时钟
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//使能PB端口时钟
    
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;    //端口配置
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
  GPIO_Init(GPIOA, &GPIO_InitStructure);                          //根据设定参数初始化GPIOB
  
  TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
  TIM_TimeBaseStructure.TIM_Prescaler = 0x0; // 预分频器 
  TIM_TimeBaseStructure.TIM_Period = ENCODER_TIM_PERIOD; //设定计数器自动重装值
  TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//选择时钟分频:不分频
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM向上计数  
  TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
  TIM_EncoderInterfaceConfig(TIM2, TIM_EncoderMode_TI12, TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);//使用编码器模式3
  TIM_ICStructInit(&TIM_ICInitStructure);
  TIM_ICInitStructure.TIM_ICFilter = 10;
  TIM_ICInit(TIM2, &TIM_ICInitStructure);
  TIM_ClearFlag(TIM2, TIM_FLAG_Update);//清除TIM的更新标志位
  TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
  //Reset counter
  TIM_SetCounter(TIM2,0);
  TIM_Cmd(TIM2, ENABLE); 
}
/**************************************************************************
函数功能:把TIM3初始化为编码器接口模式
入口参数:无
返回  值:无
**************************************************************************/
void Encoder_Init_TIM3(void)
{
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;  
  TIM_ICInitTypeDef TIM_ICInitStructure;  
  GPIO_InitTypeDef GPIO_InitStructure;
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);//使能定时器4的时钟
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);//使能PB端口时钟
    
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;    //端口配置
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
  GPIO_Init(GPIOA, &GPIO_InitStructure);                          //根据设定参数初始化GPIOB
  
  TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
  TIM_TimeBaseStructure.TIM_Prescaler = 0x0; // 预分频器 
  TIM_TimeBaseStructure.TIM_Period = ENCODER_TIM_PERIOD; //设定计数器自动重装值
  TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;//选择时钟分频:不分频
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;TIM向上计数  
  TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); 
  TIM_EncoderInterfaceConfig(TIM3, TIM_EncoderMode_TI12,TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);//使用编码器模式3
  TIM_ICStructInit(&TIM_ICInitStructure);
  TIM_ICInitStructure.TIM_ICFilter = 10;
  TIM_ICInit(TIM3, &TIM_ICInitStructure);
  TIM_ClearFlag(TIM3, TIM_FLAG_Update);//清除TIM的更新标志位
  TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);
  //Reset counter
  TIM_SetCounter(TIM3,0);
  TIM_Cmd(TIM3, ENABLE); 
}

/**************************************************************************
函数功能:单位时间读取编码器计数
入口参数:定时器
返回  值:速度值
**************************************************************************/
int Read_Encoder(u8 TIMX)
{
    int Encoder_TIM;    
   switch(TIMX)
     {
       case 2:  
         Encoder_TIM= (short)TIM2 -> CNT; 
         TIM2 -> CNT=0;
         break;
       case 3:  
         Encoder_TIM= (short)TIM3 -> CNT;  TIM3 -> CNT=0;
         break;    
         default: Encoder_TIM=0;
     }
        return Encoder_TIM;
}

3、PWM配置

#include "pwm.h"

//PWM输出初始化
//arr:自动重装值
//psc:时钟预分频数
//TIM1_PWM_Init(7199,0);//PWM频率=72000/(7199+1)=10Khz

void TIM1_PWM_Init(u16 arr,u16 psc)
{  
    GPIO_InitTypeDef GPIO_InitStructure;
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
    TIM_OCInitTypeDef  TIM_OCInitStructure;
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);// 
     RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE);  //使能GPIO外设时钟使能
   //设置该引脚为复用输出功能,输出TIM1 CH1 CH4的PWM脉冲波形
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_11; //TIM_CH1 //TIM_CH4
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
    
    TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值     
    TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值  不分频
    TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
    TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位

 
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式1
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
    TIM_OCInitStructure.TIM_Pulse = 0;                            //设置待装入捕获比较寄存器的脉冲值
    TIM_OCInitStructure.TIM_Pulse = arr >> 1;
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;     //输出极性:TIM输出比较极性高
    TIM_OC1Init(TIM1, &TIM_OCInitStructure);  //根据TIM_OCInitStruct中指定的参数初始化外设TIMx
    TIM_OC4Init(TIM1, &TIM_OCInitStructure);  //根据TIM_OCInitStruct中指定的参数初始化外设TIMx

    TIM_CtrlPWMOutputs(TIM1,ENABLE);    //MOE 主输出使能    

    TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);  //CH1预装载使能     
    TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);  //CH4预装载使能     
    
    TIM_ARRPreloadConfig(TIM1, ENABLE); //使能TIMx在ARR上的预装载寄存器
    
    TIM_Cmd(TIM1, ENABLE);  //使能TIM1
}

4、蓝牙控制

#include "usart2.h"

/**************************************************************************
函数功能:串口2初始化
入口参数: bound:波特率
返回  值:无
**************************************************************************/
void uart2_init(u32 bound)
{       
      //GPIO端口设置
  GPIO_InitTypeDef GPIO_InitStructure;
    USART_InitTypeDef USART_InitStructure;
     
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);    //使能UGPIOB时钟
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);    //使能USART2时钟
    //USART2_TX  
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //PA2
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;    //复用推挽输出
  GPIO_Init(GPIOA, &GPIO_InitStructure);
   
  //USART2_RX      
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;//PA3
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入
  GPIO_Init(GPIOA, &GPIO_InitStructure);

   //USART 初始化设置
    USART_InitStructure.USART_BaudRate = bound;//串口波特率
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
    USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
    USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;    //收发模式
  USART_Init(USART2, &USART_InitStructure);     //初始化串口2
  USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);//开启串口接受中断
  USART_Cmd(USART2, ENABLE);                    //使能串口2 
}

/**************************************************************************
函数功能:串口2接收中断
入口参数:无
返回  值:无
**************************************************************************/
u8 Fore,Back,Left,Right;
void USART2_IRQHandler(void)
{
    int Uart_Receive;
    if(USART_GetITStatus(USART2,USART_IT_RXNE)!=RESET)//接收中断标志位拉高
    {
        Uart_Receive=USART_ReceiveData(USART2);//保存接收的数据
        BluetoothCMD(Uart_Receive);                                
    }
}

void BluetoothCMD(int Uart_Receive)
{
    switch(Uart_Receive)
        {
            case 90://停止
                Fore=0,Back=0,Left=0,Right=0;
                break;
            case 65://前进
                Fore=1,Back=0,Left=0,Right=0;
                break;
            case 72://左前
                Fore=1,Back=0,Left=1,Right=0;
                break;
            case 66://右前
                Fore=1,Back=0,Left=0,Right=1;
                break;
            case 71://左转
                Fore=0,Back=0,Left=1,Right=0;
                break;
            case 67://右转
                Fore=0,Back=0,Left=0,Right=1;
                break;
            case 69://后退
                Fore=0,Back=1,Left=0,Right=0;
                break;
            case 70://左后,向右旋
                Fore=0,Back=1,Left=0,Right=1;
                break;
            case 68://右后,向左旋
                Fore=0,Back=1,Left=1,Right=0;
                break;
            default://停止
                Fore=0,Back=0,Left=0,Right=0;
                break;
        }
}

void Uart2SendByte(char byte)   //串口发送一个字节
{
        USART_SendData(USART2, byte);        //通过库函数  发送数据
        while( USART_GetFlagStatus(USART2,USART_FLAG_TC)!= SET);  
        //等待发送完成。   检测 USART_FLAG_TC 是否置1;    //见库函数 P359 介绍
}

void Uart2SendBuf(char *buf, u16 len)
{
    u16 i;
    for(i=0; i<len; i++)Uart2SendByte(*buf++);
}
void Uart2SendStr(char *str)
{
    u16 i,len;
    len = strlen(str);
    for(i=0; i<len; i++)Uart2SendByte(*str++);
}

5、中断处理函数

void EXTI9_5_IRQHandler(void) 
{
    static u8 Voltage_Counter=0;
    if(PBin(5)==0)
    {
        EXTI->PR=1<<5;                                          //清除LINE5上的中断标志位   
        mpu_dmp_get_data(&pitch,&roll,&yaw);                    //得到欧拉角(姿态角)的数据
        MPU_Get_Gyroscope(&gyrox,&gyroy,&gyroz);                //得到陀螺仪数据
        Encoder_Left=Read_Encoder(2);                           //读取编码器的值,保证输出极性一致
        Encoder_Right=-Read_Encoder(3);                         //读取编码器的值
        Led_Flash(100);
        
        Voltage_Counter++;
        if(Voltage_Counter==20)                                 //100ms读取一次电压
        {
            Voltage_Counter=0;
            Voltage=Get_battery_volt();                            //读取电池电压
        }
        
        if(KEY_Press(100))                                        //长按按键切换模式并触发模式切换初始化
        {
            if(++CTRL_MODE>=101) 
                CTRL_MODE=97;
            Mode_Change=1;
        }
        
        Get_RC();
            
        Target_Speed=Target_Speed>SPEED_Y?SPEED_Y:(Target_Speed<-SPEED_Y?(-SPEED_Y):Target_Speed);//限幅
        Turn_Speed=Turn_Speed>SPEED_Z?SPEED_Z:(Turn_Speed<-SPEED_Z?(-SPEED_Z):Turn_Speed);//限幅( (20*100) * 100)
            
        Balance_Pwm =balance_UP(pitch,Mechanical_angle,gyroy);                               //===直立环PID控制    
        Velocity_Pwm=velocity(Encoder_Left,Encoder_Right,Target_Speed);       //===速度环PID控制     
        Turn_Pwm =Turn_UP(gyroz,Turn_Speed);                                  //===转向环PID控制
        Moto1=Balance_Pwm-Velocity_Pwm+Turn_Pwm;                              //===计算左轮电机最终PWM
        Moto2=Balance_Pwm-Velocity_Pwm-Turn_Pwm;                              //===计算右轮电机最终PWM
        Xianfu_Pwm();                                                            //===PWM限幅
        Turn_Off(pitch,12);                                                      //===检查角度以及电压是否正常
        Set_Pwm(Moto1,Moto2);                                                 //===赋值给PWM寄存器  
    }
}

七、PCB板设计

八、代码开源

1、寄存器版本

链接:https://pan.baidu.com/s/1NlMHsgMF2Cu8sz955n27Eg?pwd=zxf1
提取码:zxf1
--来自百度网盘超级会员V2的分享

2、HAL库版本

链接:https://pan.baidu.com/s/1rW5M7Dz-TK4IWJxNp57mBw?pwd=zxf1
提取码:zxf1
--来自百度网盘超级会员V2的分享


本文转载自: https://blog.csdn.net/m0_73931287/article/details/134233491
版权归原作者 小小_扫地僧 所有, 如有侵权,请联系我们删除。

“STM32两轮平衡小车原理详解(开源)”的评论:

还没有评论