【Kafka】Java实现数据的生产和消费
Kafka介绍
Kafka 是由
LinkedIn
公司开发的,它是一个分布式的,支持多分区、多副本,基于 Zookeeper 的分布式消息流平台,它同时也是一款开源的基于发布订阅模式的消息引擎系统。
Kafka术语
- Broker:消息中间件处理节点,一个Kafka节点就是一个Broker,一个或者多个Broker可以组成一个Kafka集群;
- Topic:每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处);
- Partition:Partition是物理上的概念,每个Topic包含一个或多个Partition;
- Producer:负责发布消息到Kafka Broker;
- Consumer:消息消费者,向Kafka Broker读取消息的客户端;
- Consumer Group:每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定Groupname,若不指定Groupname则属于默认的Group);
- Consumer Offset:消费者在消费消息的过程中,记录消费者在分区中消费进度的字段,就是消息位移,它是一个偏移量,随着消费者不断消费分区中的消息而递增;
- Replica:Kafka 中消息的备份又叫做
副本
(Replica),副本的数量是可以配置的,Kafka 定义了两类副本,领导者副本(Leader Replica) 和 追随者副本(Follower Replica),前者对外提供服务,后者只是被动跟随; - Rebalance:当 Kafka 的某个主题的消费者组中,有一个消费者不可用后,其他消费者会自动重新分配订阅的主题分区,这个过程叫做 Rebalance,是 Kafka 实现消费者端高可用的重要手段。
Kafka特性
高吞吐、低延迟
:kakfa 最大的特点就是收发消息非常快,kafka 每秒可以处理几十万条消息,它的最低延迟只有几毫秒;高伸缩性
: 每个主题(topic) 包含多个分区(partition),主题中的分区可以分布在不同的主机(broker)中;持久性、可靠性
: Kafka 能够允许数据的持久化存储,消息被持久化到磁盘,并支持数据备份防止数据丢失,Kafka 底层的数据存储是基于 Zookeeper 存储的,Zookeeper 的数据能够持久存储;容错性
: 允许集群中的节点失败,某个节点宕机,Kafka 集群能够正常工作;高并发
: 支持数千个客户端同时读写。
Kafka应用场景
- 活动跟踪:Kafka 可以用来
跟踪用户行为
,比如你经常回去App购物,你打开App的那一刻,你的登陆信息,登陆次数都会作为消息传输到 Kafka ,当你浏览购物的时候,你的浏览信息,你的搜索指数,你的购物爱好都会作为一个个消息传递给 Kafka ,这样就可以生成报告,可以做智能推荐
,购买喜好
等; - 传递消息:Kafka 另外一个基本用途是
传递消息
,应用程序向用户发送通知就是通过传递消息来实现的,这些应用组件可以生成消息,而不需要关心消息的格式,也不需要关心消息是如何发送的; - 度量指标:Kafka也经常
用来记录运营监控数据
。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告; - 日志记录:Kafka 的基本概念来源于提交日志,比如可以把数据库的更新发送到 Kafka 上,用来记录数据库的更新时间,通过Kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等;
- 流式处理:流式处理是有一个能够提供多种应用程序的领域;
- 限流削峰:Kafka 多用于互联网领域某一时刻请求特别多的情况下,可以把请求写入Kafka 中,避免直接请求后端程序导致服务崩溃。
以上介绍参考Kafka官方文档。
Kafka核心API
Kafka有
4
个核心API
- 应用程序使用Producer API发布消息到
1
个或多
个Topics中; - 应用程序使用ConsumerAPI来订阅
1
个或多
个Topics,并处理产生的消息; - 应用程序使用Streams API充当一个流处理器,从1个或多个Topics消费输入流,并产生一个输出流到1个或多个Topics,有效地将输入流转换到输出流;
- Connector API允许构建或运行可重复使用的生产者或消费者,将Topic链接到现有的应用程序或数据系统。
Kafka为何如此之快
Kafka 实现了
零拷贝
原理来快速移动数据,避免了内核之间的切换。Kafka 可以将数据记录分批发送,从生产者到文件系统(Kafka 主题日志)到消费者,可以端到端的查看这些批次的数据。批处理能够进行更有效的数据压缩并减少 I/O 延迟,Kafka 采取顺序写入磁盘的方式,避免了随机磁盘寻址的浪费。
总结一下其实就是四个要点:
- 顺序读写;
- 零拷贝;
- 消息压缩;
- 分批发送。
案例
项目创建:
dependencies:
构建工具为Maven,Maven的依赖如下:
<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka_2.12</artifactId><version>1.0.0</version><scope>provided</scope></dependency><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>1.0.0</version></dependency><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-streams</artifactId><version>1.0.0</version></dependency>
Kafka Producer
packagecn.com.codingce.module;importjava.util.Properties;importjava.util.Random;importorg.apache.kafka.clients.producer.KafkaProducer;importorg.apache.kafka.clients.producer.ProducerConfig;importorg.apache.kafka.clients.producer.ProducerRecord;importorg.apache.kafka.common.serialization.StringSerializer;publicclassProducer{// 定义主题publicstaticString topic ="codingce_test";publicstaticvoidmain(String[] args)throwsInterruptedException{Properties p =newProperties();// bootstrap.servers: kafka的地址, 多个地址用逗号分割
p.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.31.150:9092");// acks:消息的确认机制,默认值是0. acks=0: 如果设置为0,生产者不会等待kafka的响应; acks=1: 这个配置意味着kafka会把这条消息写到本地日志文件中,但是不会等待集群中其他机器的成功响应// acks=all: 这个配置意味着leader会等待所有的follower同步完成. 这个确保消息不会丢失, 除非kafka集群中所有机器挂掉. 这是最强的可用性保证.
p.put("acks","all");// retries: 配置为大于0的值的话, 客户端会在消息发送失败时重新发送.
p.put("retries",0);// batch.size: 当多条消息需要发送到同一个分区时,生产者会尝试合并网络请求. 这会提高client和生产者的效率.
p.put("batch.size",16384);// key.serializer: 键序列化,默认org.apache.kafka.common.serialization.StringDeserializer.
p.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class);// value.deserializer:值序列化,默认org.apache.kafka.common.serialization.StringDeserializer.
p.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class);KafkaProducer<String,String> kafkaProducer =newKafkaProducer<>(p);try{do{String msg ="后端码匠, "+newRandom().nextInt(100);ProducerRecord<String,String> record =newProducerRecord<>(topic, msg);
kafkaProducer.send(record);System.out.println("======消息发送成功: "+ msg +" ======");Thread.sleep(1000L);}while(true);}finally{
kafkaProducer.close();}}}
output
======消息发送成功: 后端码匠, 97============消息发送成功: 后端码匠, 35============消息发送成功: 后端码匠, 81============消息发送成功: 后端码匠, 46============消息发送成功: 后端码匠, 62============消息发送成功: 后端码匠, 53============消息发送成功: 后端码匠, 42============消息发送成功: 后端码匠, 56============消息发送成功: 后端码匠, 99============消息发送成功: 后端码匠, 46============消息发送成功: 后端码匠, 49============消息发送成功: 后端码匠, 35============消息发送成功: 后端码匠, 17============消息发送成功: 后端码匠, 78============消息发送成功: 后端码匠, 66============消息发送成功: 后端码匠, 4============消息发送成功: 后端码匠, 9============消息发送成功: 后端码匠, 69============消息发送成功: 后端码匠, 52============消息发送成功: 后端码匠, 2============消息发送成功: 后端码匠, 8============消息发送成功: 后端码匠, 86============消息发送成功: 后端码匠, 12============消息发送成功: 后端码匠, 67============消息发送成功: 后端码匠, 91============消息发送成功: 后端码匠, 8============消息发送成功: 后端码匠, 56============消息发送成功: 后端码匠, 89============消息发送成功: 后端码匠, 37============消息发送成功: 后端码匠, 39============消息发送成功: 后端码匠, 71======
Kafka Consumer
packagecn.com.codingce.module;importorg.apache.kafka.clients.consumer.ConsumerConfig;importorg.apache.kafka.clients.consumer.ConsumerRecord;importorg.apache.kafka.clients.consumer.ConsumerRecords;importorg.apache.kafka.clients.consumer.KafkaConsumer;importorg.apache.kafka.common.serialization.StringDeserializer;importjava.util.Collections;importjava.util.Properties;publicclassConsumer{privatestaticfinalStringGROUPID="codingce_consumer_a";publicstaticvoidmain(String[] args){Properties p =newProperties();// bootstrap.servers: kafka的地址, 多个地址用逗号分割
p.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.31.150:9092");// 消费者所属的分组id, 组名 不同组名可以重复消费.例如你先使用了组名A消费了Kafka的1000条数据, 但是你还想再次进行消费这1000条数据, // 并且不想重新去产生, 那么这里你只需要更改组名就可以重复消费了.
p.put(ConsumerConfig.GROUP_ID_CONFIG,GROUPID);// 是否自动提交, 默认为true.
p.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"true");// 从poll(拉)的回话处理时长
p.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG,"1000");// 超时时间
p.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG,"30000");// 一次最大拉取的条数
p.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG,1000);// 消费规则, 默认earliest
p.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");// key.serializer: 键序列化, 默认org.apache.kafka.common.serialization.StringDeserializer.
p.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class);// value.deserializer:值序列化, 默认org.apache.kafka.common.serialization.StringDeserializer.
p.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class);KafkaConsumer<String,String> kafkaConsumer =newKafkaConsumer<>(p);// 订阅消息
kafkaConsumer.subscribe(Collections.singletonList(Producer.topic));do{// 订阅之后, 再从kafka中拉取数据ConsumerRecords<String,String> records = kafkaConsumer.poll(100);for(ConsumerRecord<String,String> record : records){System.out.printf("-----topic:%s, offset:%d, 消息:%s-----\n", record.topic(), record.offset(), record.value());}}while(true);}}
output
-----topic:codingce_test, offset:289, 消息:后端码匠, 97-----
-----topic:codingce_test, offset:290, 消息:后端码匠, 35-----
-----topic:codingce_test, offset:291, 消息:后端码匠, 81-----
-----topic:codingce_test, offset:292, 消息:后端码匠, 46-----
-----topic:codingce_test, offset:293, 消息:后端码匠, 62-----
-----topic:codingce_test, offset:294, 消息:后端码匠, 53-----
-----topic:codingce_test, offset:295, 消息:后端码匠, 42-----
-----topic:codingce_test, offset:296, 消息:后端码匠, 56-----
-----topic:codingce_test, offset:297, 消息:后端码匠, 99-----
-----topic:codingce_test, offset:298, 消息:后端码匠, 46-----
-----topic:codingce_test, offset:299, 消息:后端码匠, 49-----
-----topic:codingce_test, offset:300, 消息:后端码匠, 35-----
-----topic:codingce_test, offset:301, 消息:后端码匠, 17-----
-----topic:codingce_test, offset:302, 消息:后端码匠, 78-----
-----topic:codingce_test, offset:303, 消息:后端码匠, 66-----
-----topic:codingce_test, offset:304, 消息:后端码匠, 4-----
-----topic:codingce_test, offset:305, 消息:后端码匠, 9-----
-----topic:codingce_test, offset:306, 消息:后端码匠, 69-----
-----topic:codingce_test, offset:307, 消息:后端码匠, 52-----
-----topic:codingce_test, offset:308, 消息:后端码匠, 2-----
-----topic:codingce_test, offset:309, 消息:后端码匠, 8-----
-----topic:codingce_test, offset:310, 消息:后端码匠, 86-----
-----topic:codingce_test, offset:311, 消息:后端码匠, 12-----
-----topic:codingce_test, offset:312, 消息:后端码匠, 67-----
-----topic:codingce_test, offset:313, 消息:后端码匠, 91-----
-----topic:codingce_test, offset:314, 消息:后端码匠, 8-----
-----topic:codingce_test, offset:315, 消息:后端码匠, 56-----
-----topic:codingce_test, offset:316, 消息:后端码匠, 89-----
-----topic:codingce_test, offset:317, 消息:后端码匠, 37-----
-----topic:codingce_test, offset:318, 消息:后端码匠, 39-----
-----topic:codingce_test, offset:319, 消息:后端码匠, 71-----
本次采用Docker 搭建的单机 Kafka、Zookeeper,Kafka介绍参考官方文档:http://kafka.apache.org/intro
版权归原作者 后端码匠 所有, 如有侵权,请联系我们删除。