前言:
我的场景是从SQL Server数据库获取指定表的增量数据,查询了很多获取增量数据的方案,最终选择了Flink的 flink-connector-sqlserver-cdc ,这个需要用到SQL Server 的CDC(变更数据捕获),通过CDC来获取增量数据,处理数据前需要对数据库进行配置,如果不清楚如何配置可以看看我这篇文章:《SQL Server数据库开启CDC变更数据捕获操作指引》
废话不多说,直接上干货,如有不足还请指正
1、springboot引入依赖:
<properties>
<flink.version>1.16.0</flink.version>
</properties>
<dependencies>
<dependency>
<groupId>com.microsoft.sqlserver</groupId>
<artifactId>mssql-jdbc</artifactId>
<version>9.4.0.jre8</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.26</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-connector-sqlserver-cdc</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.11</artifactId>
<version>1.13.6</version>
</dependency>
</dependencies>
2、yml配置文件
spring:
datasource:
url: jdbc:sqlserver://127.0.0.1:1433;DatabaseName=HM_5001
username: sa
password: root
driver-class-name: com.microsoft.sqlserver.jdbc.SQLServerDriver
# 实时同步SQL Server数据库配置
CDC:
DataSource:
host: 127.0.0.1
port: 1433
database: HM_5001
tableList: dbo.t1,dbo.Tt2,dbo.t3,dbo.t4
username: sa
password: sa
3、创建SQL server CDC变更数据监听器
import com.ververica.cdc.connectors.sqlserver.SqlServerSource;
import com.ververica.cdc.connectors.sqlserver.table.StartupOptions;
import com.ververica.cdc.debezium.DebeziumSourceFunction;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.ApplicationArguments;
import org.springframework.boot.ApplicationRunner;
import org.springframework.stereotype.Component;
import java.io.Serializable;
/**
* SQL server CDC变更监听器
**/
@Component
@Slf4j
public class SQLServerCDCListener implements ApplicationRunner, Serializable {
/**
* CDC数据源配置
*/
@Value("${CDC.DataSource.host}")
private String host;
@Value("${CDC.DataSource.port}")
private String port;
@Value("${CDC.DataSource.database}")
private String database;
@Value("${CDC.DataSource.tableList}")
private String tableList;
@Value("${CDC.DataSource.username}")
private String username;
@Value("${CDC.DataSource.password}")
private String password;
private final DataChangeSink dataChangeSink;
public SQLServerCDCListener(DataChangeSink dataChangeSink) {
this.dataChangeSink = dataChangeSink;
}
@Override
public void run(ApplicationArguments args) throws Exception {
log.info("开始启动Flink CDC获取ERP变更数据......");
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DebeziumSourceFunction<DataChangeInfo> dataChangeInfoMySqlSource = buildDataChangeSource();
DataStream<DataChangeInfo> streamSource = env
.addSource(dataChangeInfoMySqlSource, "SQLServer-source")
.setParallelism(1);
streamSource.addSink(dataChangeSink);
env.execute("SQLServer-stream-cdc");
}
/**
* 构造CDC数据源
*/
private DebeziumSourceFunction<DataChangeInfo> buildDataChangeSource() {
String[] tables = tableList.replace(" ", "").split(",");
return SqlServerSource.<DataChangeInfo>builder()
.hostname(host)
.port(Integer.parseInt(port))
.database(database) // monitor sqlserver database
.tableList(tables) // monitor products table
.username(username)
.password(password)
/*
*initial初始化快照,即全量导入后增量导入(检测更新数据写入)
* latest:只进行增量导入(不读取历史变化)
*/
.startupOptions(StartupOptions.latest())
.deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String
.build();
}
}
4、反序列化数据,转为变更JSON对象
import com.alibaba.fastjson.JSONObject;
import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
import io.debezium.data.Envelope;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import org.apache.kafka.connect.source.SourceRecord;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.util.List;
import java.util.Optional;
/**
* SQLServer消息读取自定义序列化
**/
@Slf4j
public class JsonDebeziumDeserializationSchema implements DebeziumDeserializationSchema<DataChangeInfo> {
public static final String TS_MS = "ts_ms";
public static final String BEFORE = "before";
public static final String AFTER = "after";
public static final String SOURCE = "source";
public static final String CREATE = "CREATE";
public static final String UPDATE = "UPDATE";
/**
*
* 反序列化数据,转为变更JSON对象
*/
@Override
public void deserialize(SourceRecord sourceRecord, Collector<DataChangeInfo> collector) {
try {
String topic = sourceRecord.topic();
String[] fields = topic.split("\\.");
String database = fields[1];
String tableName = fields[2];
Struct struct = (Struct) sourceRecord.value();
final Struct source = struct.getStruct(SOURCE);
DataChangeInfo dataChangeInfo = new DataChangeInfo();
dataChangeInfo.setBeforeData(getJsonObject(struct, BEFORE).toJSONString());
dataChangeInfo.setAfterData(getJsonObject(struct, AFTER).toJSONString());
// 获取操作类型 CREATE UPDATE DELETE 1新增 2修改 3删除
Envelope.Operation operation = Envelope.operationFor(sourceRecord);
String type = operation.toString().toUpperCase();
int eventType = type.equals(CREATE) ? 1 : UPDATE.equals(type) ? 2 : 3;
dataChangeInfo.setEventType(eventType);
dataChangeInfo.setDatabase(database);
dataChangeInfo.setTableName(tableName);
ZoneId zone = ZoneId.systemDefault();
Long timestamp = Optional.ofNullable(struct.get(TS_MS)).map(x -> Long.parseLong(x.toString())).orElseGet(System::currentTimeMillis);
dataChangeInfo.setChangeTime(LocalDateTime.ofInstant(Instant.ofEpochMilli(timestamp), zone));
//7.输出数据
collector.collect(dataChangeInfo);
} catch (Exception e) {
log.error("SQLServer消息读取自定义序列化报错:{}", e.getMessage());
e.printStackTrace();
}
}
/**
*
* 从源数据获取出变更之前或之后的数据
*/
private JSONObject getJsonObject(Struct value, String fieldElement) {
Struct element = value.getStruct(fieldElement);
JSONObject jsonObject = new JSONObject();
if (element != null) {
Schema afterSchema = element.schema();
List<Field> fieldList = afterSchema.fields();
for (Field field : fieldList) {
Object afterValue = element.get(field);
jsonObject.put(field.name(), afterValue);
}
}
return jsonObject;
}
@Override
public TypeInformation<DataChangeInfo> getProducedType() {
return TypeInformation.of(DataChangeInfo.class);
}
}
5、CDC 数据实体类
import lombok.Data;
import java.io.Serializable;
import java.time.LocalDateTime;
/**
* CDC 数据实体类
*/
@Data
public class DataChangeInfo implements Serializable {
/**
* 数据库名
*/
private String database;
/**
* 表名
*/
private String tableName;
/**
* 变更时间
*/
private LocalDateTime changeTime;
/**
* 变更类型 1新增 2修改 3删除
*/
private Integer eventType;
/**
* 变更前数据
*/
private String beforeData;
/**
* 变更后数据
*/
private String afterData;
}
6、自定义ApplicationContextUtil
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.stereotype.Component;
import java.io.Serializable;
@Component
public class ApplicationContextUtil implements ApplicationContextAware, Serializable {
/**
* 上下文
*/
private static ApplicationContext context;
@Override
public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
this.context = applicationContext;
}
public static ApplicationContext getApplicationContext() {
return context;
}
public static <T> T getBean(Class<T> beanClass) {
return context.getBean(beanClass);
}
}
7、自定义sink 交由spring管理,处理变更数据
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.springframework.stereotype.Component;
import lombok.extern.slf4j.Slf4j;
/**
* 自定义sink 交由spring管理
* 处理变更数据
**/
@Component
@Slf4j
public class DataChangeSink extends RichSinkFunction<DataChangeInfo> {
private static final long serialVersionUID = -74375380912179188L;
private UserMapper userMapper;
/**
* 在open()方法中动态注入Spring容器的类
* 在启动SpringBoot项目是加载了Spring容器,其他地方可以使用@Autowired获取Spring容器中的类;
* 但是Flink启动的项目中,默认启动了多线程执行相关代码,导致在其他线程无法获取Spring容器,
* 只有在Spring所在的线程才能使用@Autowired,故在Flink自定义的Sink的open()方法中初始化Spring容器
*/
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
userMapper = ApplicationContextUtil.getBean(UserMapper.class);
}
@Override
public void invoke(DataChangeInfo dataChangeInfo, Context context) {
log.info("收到变更原始数据:{}", dataChangeInfo);
// TODO 开始处理你的数据吧
}
以上是我亲自验证测试的结果,已发布生产环境,如有不足还请指正。
本文转载自: https://blog.csdn.net/weixin_42717648/article/details/130148168
版权归原作者 arden.WANG 所有, 如有侵权,请联系我们删除。
版权归原作者 arden.WANG 所有, 如有侵权,请联系我们删除。