文章目录
前言
根据分配数据的规则,窗口的具体实现可以分为 4 类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)、会话窗口(Session Window),以及全局窗口(Global Window)
1. 滚动窗口(Tumbling Windows)
滚动窗口有固定的大小,是一种
对数据进行均匀切片
的划分方式。窗口之间没有重叠,也不会有间隔,是“首尾相接”的状态。滚动窗口可以基于时间定义,也可以基于数据个数定义;需要的参数只有一个,就是窗口的大小(window size)。
2. 滑动窗口(Sliding Windows)
与滚动窗口类似,滑动窗口的大小也是固定的。区别在于,窗口之间并不是首尾相接的,而是可以“错开”一定的位置。如果看作一个窗口的运动,那么就像是向前小步“滑动”一样。定义滑动窗口的参数有两个:除去
窗口大小
(window size)之外,还有一个
滑动步长
(window slide),代表窗口计算的频率。
滑动窗口其实是固定大小窗口的更广义的一种形式;换句话说,滚动窗口也可以看作是一种特殊的滑动窗口——窗口大小等于滑动步长(size = slide)
3. 会话窗口(Session Windows)
借用会话超时失效的机制来描述窗口
简单来说,就是数据来了之后就开启一个会话窗口,如果接下来还有数据陆续到来,那么就一直保持会话;如果一段时间一直没收到数据,那就认为会话超时失效,窗口自动关闭。与滑动窗口和滚动窗口不同,
会话窗口只能基于时间来定义
,而没有“会话计数窗口”的概念。
考虑到事件时间语义下的乱序流,在 Flink 底层,对会话窗口的处理会比较特殊:每来一个新的数据,都会创建一个新的会话窗口;然后判断已有窗口之间的距离,如果小于给定的 size,就对它们进行合并(merge)操作。在 Window 算子中,对会话窗口会有单独的处理逻辑。
4. 全局窗口(Global Windows)
这种窗口全局有效,会把相同 key 的所有数据都分配到同一个窗口中;说直白一点,就跟没分窗口一样。无界流的数据永无止尽,所以这种窗口也没有结束的时候,默认是不会做触发计算的。如果希望它能对数据进行计算处理,还需要
自定义触发器
(Trigger)
版权归原作者 但行益事莫问前程 所有, 如有侵权,请联系我们删除。