0


DataX自动化生成配置json,创建ODS表,多线程调度脚本[mysql-->hive]

DataX自动生成json配置文件及多线程执行脚本(仅支持mysql-->hive),其他版本自行实现,修改json模版即可

执行Datax任务

datax_run.py

# 指定项目下的所有的ods任务,如果不指定参数,默认执行dw下的prefix过滤后的所有抽取任务
# 使用方式:python3 datax_run.py -p 项目名 -f 过滤json的前缀或多个文件名,拼接
import os
import re
import sys
import json
import time
import argparse
import subprocess
from threading import Thread

# from logger import create_logger

# 必须在datax目录下执行
datax_home = None

datax = f"bin/datax.py"
datax_config_dir = f"job/dw"
logs_dir = "logs"
prefix = ["ods_"]
subfix = [".json"]
thread_num = 8
task_count = 0

def init():
    global datax_home
    # 检查配置及环境变量是否存在问题
    # 必须在datax目录下执行
    environ = os.environ
    if not environ.keys().__contains__("DATAX_HOME"):
        print("未找到环境变量[DATAX_HOME]")
        return False
    datax_home = environ.get("DATAX_HOME")
    if datax_home is None:
        print("环境变量[DATAX_HOME]未设置值")
        return False
    else:
       hive)
        datax_config_dir = f"job/{hive}"
        logs_dir = f"{logs_dir}/{hive}"

    if args_filter is not None:
        print("过滤条件:", args_filter)
        prefix.clear()
        for config in args_filter.split(","):
            prefix.append(config)
    elif hive is not None:
        prefix = ["ods_"]

    print(f"初始化参数:配置路径--> {datax_config_dir}\nprefix--> {prefix}")

def run_sub_shell(cmd):
    try:
        # cmd = f"source /etc/profile && cd {datax_home} && " + cmd
        # print(cmd)
        output = subprocess.check_output(cmd, shell=True, stderr=subprocess.STDOUT, encoding="utf-8", cwd=datax_home)
        print(f'Command "{cmd}" executed successfully. Output: \n{output}')
        return output
    except subprocess.CalledProcessError as e:
        print(f'Command "{cmd}" failed with error: \n{e.output}')
        exit(-1)

def check_status(log_path):
    with open(file=log_path, mode="r", encoding="utf-8") as fp:
        if fp.read().__contains__("completed succes  print(f"datax_home:{datax_home}")
        return True

if not init():
    print("初始化失败,正在退出...")
    exit(-1)

# log = create_logger("datax_run", f"{datax_home}/logs/")

def extract_filename(file_path):
    re_search = re.search(r'([^\\/]+)\.json$', file_path)
    if re_search:
        return re_search.group(1)
    else:
        print("未匹配到文件名,请检查...")
        return None

def check_args():
    parser = argparse.ArgumentParser(description='datax批量任务执行脚本')
    # 添加--hive参数
    parser.add_argument("--hive", type=str, help="hive数据库")
    # 添加-f/--filter参数
    parser.add_argument("-f", "--filter", type=str, help="输入过滤条件")

    # 解析命令行参数
    args = parser.parse_args()
    hive = args.hive
    args_filter = args.filter
    # 输出结果

    global prefix, datax_config_dir, logs_dir
    if hive is None:
        print(f"默认使用配置目录[{datax_config_dir}]")
    else:
        print("目标Hive库:",sfully"):
            print(f"执行datax任务成功:{log_path}")
            return True
        else:
            print(f"执行datax任务失败:{log_path}")
            exit(-1)

def init_log():
    # 获取今天日期
    from datetime import datetime
    date_str = datetime.today().date()
    # 创建目录
    global logs_dir
    logs_dir = f"{datax_home}/{logs_dir}/{date_str}"
    os.makedirs(logs_dir, exist_ok=True)
    print(f"logs dir[{logs_dir}]")

def match_config(x: str, prefix: [], subfix: []):
    for pre in prefix:
        if x.startswith(pre):
            for sub in subfix:
                if x.endswith(sub):
                    return True
    return False

def thread_run(config):
    config_name = extract_filename(config)
    cmd = f"python {datax} {config}"
    # cmd = f"python {datax} {config} > {logs_dir}/{config_name}.log"
    output = run_sub_shell(cmd)

    if output.__contains__("completed successfully"):
        task_count -= 1
        print(f"同步数据[{config_name}]成功,剩余任务{task_count}...")
    else:
        print(f"同步数据[{config_name}]失败!")
        exit(-1)

def gen_thread_data():
    full_paths = []
    # 指定配置文件目录
    for dirpath, dirnames, filenames in os.walk(f"{datax_home}/{datax_config_dir}"):
        configs = filter(lambda x: match_config(x, prefix, subfix), filenames)
        full_paths = [dirpath + "/" + x for x in configs]
    return full_paths

def future_thread():
    from concurrent import futures
    thread_data = gen_thread_data()
    global task_count
    task_count = len(thread_data)
    print(f"待执行抽取任务数量:{task_count}")
    with futures.ThreadPoolExecutor(max_workers=thread_num) as executor:
        for elem in thread_data:
            executor.submit(thread_run, elem)

def start():
    check_args()
    # init_log()
    future_thread()

if __name__ == '__main__':
    start()

生成Datax配置,创建ODS表

根据配置生成Datax配置json和自动创建hive ods表的脚本build_core.py

import json
import re
import sys
from pathlib import Path
import mysql.connector
from pyhive import hive
import os
import subprocess

datax_home = None

# 初始化检查环境
def init():
    global datax_home
    # 检查配置及环境变量是否存在问题
    # 必须在datax目录下执行
    environ = os.environ
    if not environ.keys().__contains__("DATAX_HOME"):
        print("未找到环境变量[DATAX_HOME]")
        return False
    datax_home = environ.get("DATAX_HOME")
    if datax_home is None:
        print("环境变量[DATAX_HOME]未设置值")
        return False
    else:
        print(f"datax_home:{datax_home}")
        return True

if not init():
    print("初始化失败,正在退出...")
    exit(-1)

# 主要内容用于生成datax的mysql到hive的配置文件
# 对于不同的项目或数据库,指定不同的配置文件,生成不同的json
def dynamic_import():
    import importlib.util
    argv = sys.argv
    if len(argv) <= 1:
        print("请输出加载的python配置模块名!")
        exit(-1)
    module_ = argv[1]
    try:
        print(f"使用__import__导入模块")
        module = __import__(module_)
    except Exception as e:
        print(f"使用__import__导入模块失败")
        print(f"使用importlib导入模块")
        args = module_.split(os.sep)
        if len(args) == 1:
            module_name = args[0]
            module_path = module_name
        elif len(args) > 1:
            module_name = args[-1]
            module_path = module_
        print(f"module_path:{module_path}\nmodule_name:{module_name}")
        spec = importlib.util.spec_from_file_location(module_name, module_path)
        module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(module)

    m_keys = module.__dict__
    key_list = list(m_keys.keys())
    for k in key_list:
        if not str(k).startswith("__"):
            globals()[k] = m_keys.get(k)
    return module

dynamic_import()

global_config = project_config
config_source = source_ds
project_path = global_config['project_path']

hive_host = global_config['hive_host']
hive_port = global_config['hive_port']
hive_db = global_config['hive_db']

use_kb = global_config['enable_kerberos']
use_pt = global_config['enable_partition']
keytab = global_config['key_table']
principal = global_config['principal']

# 加载当前项目数据库及表
def load_db():
    if isinstance(config_source, list):
        # 多数据源多数据库模式
        for source in config_source:
            db_tables_ = source["db_tables"]
            db_connect = source["connect"]
            host_ = db_connect['host']
            port_ = db_connect['port']
            username_ = db_connect['username']
            password_ = db_connect['password']
            for db_info in db_tables_:
                db_ = db_info["db"]
                if dict(db_info).keys().__contains__("project"):
                    project_ = db_info["project"]
                else:
                    project_ = None
                tables_ = db_info["tables"]
                query_table(host_, port_, username_, password_, db_, project_, tables_)
    else:
        print("加载source_ds的config配置出现问题...")

def save_local(save_path, datax_json):
    path = Path(f'../job/{save_path}')
    if datax_home is not None:
        path = Path(f"{datax_home}/job/{save_path}")
    elif not Path('../').exists():
        path = Path(f"job/{save_path}")

    path.parent.mkdir(parents=True, exist_ok=True)
    # 覆盖文件写入
    path.write_text(datax_json, encoding="utf-8")

def camel_to_snake(field: str):
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', field).lower()

def is_camel(s):
    return bool(re.match(r'^[a-z]+([A-Z][a-z]*)*$', s))

def convert_field(field):
    table_name = field[0]
    field_name = field[1]
    field_type = field[2]
    field_comment = field[3]
    # 是否为驼峰
    if is_camel(field_name):
        table_name = f"camel_{table_name}"
        field_name = camel_to_snake(field_name)
        field_comment = f"({field[1]}){field_comment}"
    return [table_name, field_name, field_type, field_comment]

def convert_ods_field(field):
    field_name = field['field_name']
    field_type = field['field_type']
    field_hive_type = field['field_hive_type']
    field_comment = field['field_comment']
    # 是否为驼峰
    if is_camel(field_name):
        field_name = camel_to_snake(field_name)
        field_comment = f"({field['field_name']}){field_comment}"
    return {"field_name": field_name, "field_type": field_type, "field_hive_type": field_hive_type,
            "field_comment": field_comment}

def build_db(tables: list):
    database = {}

    for table in tables:
        # 查询指定表的所有字段名和类型
        table_name = table[0]
        field_name = table[1]
        field_type = table[2]
        field_comment = table[3]

        table_fields: list = database.get(table_name)
        field_hive_type = hive_type(field_type)
        field_one = {"field_name": field_name, "field_type": field_type, "field_hive_type": field_hive_type,
                     "field_comment": field_comment}
        if table_fields is not None:
            table_fields.append(field_one)
        else:
            table_fields = [field_one]

        database[table_name] = table_fields
    return database

def run_sub_shell(cmd):
    try:
        # cmd = f"source /etc/profile && cd {datax_home} && " + cmd
        # print(cmd)
        output = subprocess.check_output(cmd, shell=True, stderr=subprocess.STDOUT, encoding="utf-8", cwd=datax_home)
        print(f'Command "{cmd}" executed successfully. Output: \n{output}')
        return output
    except subprocess.CalledProcessError as e:
        print(f'Command "{cmd}" failed with error: \n{e.output}')
        exit(-1)

def hive_file_sql(create_db_sql):
    # 创建临时文件
    tmp_hql = f"{datax_home}/tmp/_hive_sql.hql"
    with open(tmp_hql, mode="w", encoding="utf-8") as fp:
        fp.write(create_db_sql)
    # 执行hive -f
    if os.path.exists(tmp_hql):
        run_sub_shell(f"hive -f {tmp_hql}")
    else:
        print(f"{tmp_hql}文件不存在...")
    # 删除临时文件
    os.remove(tmp_hql)

def query_table(host, port, user, password, db, project_, include_tables):
    # 连接 MySQL 数据库
    conn = mysql.connector.connect(
        host=host,
        port=port,
        user=user,
        password=password,
        database=db
    )
    # 获取游标对象
    cursor = conn.cursor()
    query_col_sql = f"select table_name,column_name,data_type,column_comment from information_schema.`COLUMNS` where table_schema='{db}' "
    if len(include_tables) > 0:
        name_str = ",".join([f"'{x}'" for x in include_tables])
        table_filter = f' and table_name in({name_str})'
        query_col_sql += table_filter
    else:
        print(f"查询数据库:[{db}]的所有表")
    # 查询指定数据库中的所有表名
    # print(query_col_sql)
    cursor.execute(query_col_sql)
    tables = cursor.fetchall()

    # 数据库的json
    database = build_db(tables)

    create_db_sql = f"use {hive_db};"
    # 生成各个表的datax配置文件
    for table_name in database.keys():
        table_fields = database[table_name]
        ods_source, ods_table, datax_json = build_datax(host, port, user, password, db, project_, table_name,
                                                        table_fields)
        # datax和hive的表名全部小写,datax配置文件中的表名使用原始的大小写
        save_local(f"{hive_db}/{ods_table}.json", datax_json)
        print(f"生成datax配置文件-->{hive_db}/{ods_table}.json")

        # 生成建表语句
        create_db_sql += build_create_hive(ods_table, table_fields)
        print(f"创建hive表-->{hive_db}.{ods_table}")
    hive_file_sql(create_db_sql)
    # print(create_db_sql)
    # 关闭游标和连接
    cursor.close()
    conn.close()
    print(f"自动处理数据库[{db}]的datax配置及hive库ods表完成\n")

def exec_hive_sql(sql_list=["show databases"]):
    # 连接到Hive服务器
    if use_kb:
        conn = hive.Connection(host=hive_host, port=hive_port, database=hive_db, auth='KERBEROS',
                               kerberos_service_name='hive')
    else:
        conn = hive.Connection(host=hive_host, port=hive_port, database=hive_db)
    # 执行查询
    cursor = conn.cursor()
    for sql in sql_list:
        # print(f"执行sql:\n{sql}\n")
        cursor.execute(sql)

    # 关闭连接
    cursor.close()
    conn.close()

def build_create_hive(hive_table, fields):
    # 生成建表语句
    stored = "orc"
    hive_fields = list(map(convert_ods_field, fields))
    field_sql = ",\n".join(
        map(lambda x: f"\t\t`{x['field_name']}` {x['field_hive_type']} comment '{x['field_comment']}'", hive_fields))
    dw_type = hive_table.split("_")[0]
    partition_sql = ""
    if use_pt:
        partition_sql = "partitioned by(pt_day string comment '格式:YYYYMMDD')"
    create_sql = f"""
        drop table if exists {hive_table};
        create external table if not exists {hive_table}
        (
        {field_sql}
        ){partition_sql}
        ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
        stored as {stored}
        LOCATION '{project_path}/{dw_type}/{hive_table}'
        TBLPROPERTIES('orc.compress'='SNAPPY');
    """
    # print(create_sql)
    return create_sql

def unify_name(database: str):
    snake_case = re.sub(r'(?<!^)(?=[A-Z])', '_', database).lower()
    return snake_case.replace("_", "").replace("-", "")

def build_datax(host, port, username, password, database, project_, source_table, fields):
    if project_ is None or len(project_) == 0:
        ods_source = unify_name(database)
    else:
        ods_source = unify_name(project_)
    pt_str = '_pt' if use_pt else ''
    ods_table = f"ods_{ods_source}_{source_table}{pt_str}_a".lower()
    jdbc_url = f"jdbc:mysql://{host}:{port}/{database}?useSSL=false&useUnicode=true&allowMultiQueries=true&characterEncoding=utf8&characterSetResults=utf8&serverTimezone=Asia/Shanghai"
    columns = ",".join([f'"`{field["field_name"]}`"' for field in fields])

    hive_fields = list(map(convert_ods_field, fields))
    hive_columns = ",".join(
        [f'{{"name":"{field["field_name"]}","type":"{field["field_hive_type"]}" }}' for field in hive_fields])
    pt_config = '"ptDay": "pt_day",' if use_pt else ""
    kerberos_config = f'"haveKerberos": "{use_kb}","kerberosKeytabFilePath": "{keytab}","kerberosPrincipal": "{principal}",' if use_kb else ""
    mysql_hive_tpl = '''
    {
  "job": {
    "setting": {
      "speed": {
        "channel": 3,
        "byte":-1
      },
      "errorLimit": {
        "record": 0,
        "percentage": 0
      }
    },
    "content": [
      {
        "reader": {
          "name": "mysqlreader",
          "parameter": {
            "username": "${username}",
            "password": "${password}",
            "column": [${columns}],
            "splitPk": null,
            "connection": [
              {
                "table": ["${sourceTable}"],
                "jdbcUrl": ["${jdbcUrl}"]
              }
            ]
          }
        },
        "writer": {
          "name": "hdfswriter",
          "parameter": {
            "defaultFS": "hdfs://master:8020",
            "fileType": "orc",${kerberosConfig}${ptConfig}
            "path": "${projectPath}/ods/${odsTable}",
            "fileName": "${odsTable}",
            "column": [${hiveColumns}],
            "writeMode": "truncate",
            "fieldDelimiter": "\\t",
            "compress": "SNAPPY",
            "database":"${database}"
          }
        }
      }
    ]
  }
}
    '''

    var_dict = {"username": username, "password": password, "columns": columns, "sourceTable": source_table,
                "jdbcUrl": jdbc_url,
                "kerberosConfig": kerberos_config, "ptConfig": pt_config, "projectPath": project_path,
                "odsTable": ods_table,
                "hiveColumns": hive_columns, "database": hive_db}
    for k in var_dict.keys():
        mysql_hive_tpl = mysql_hive_tpl.replace('${' + k + '}', var_dict[k])
    data = json.loads(mysql_hive_tpl)
    data = json.dumps(data, indent=2, ensure_ascii=False).replace("True", "true").replace("False", "false")
    return ods_source, ods_table, data

def hive_type(mysql_type):
    if mysql_type == "tinyint" or mysql_type == "smallint" or mysql_type == "boolean":
        return "smallint"
    elif mysql_type == "long" or mysql_type == "int":
        return "bigint"
    elif mysql_type == "float" or mysql_type == "double" or mysql_type == "decimal":
        return "double"
    elif mysql_type == "date":
        return "date"
    elif mysql_type == "timestamp":
        return "timestamp"
    else:
        return "string"

if __name__ == '__main__':
    load_db()

配置文件模版config_xx.py

# 目前只支持从mysql到hive
project_name = "project_name"
hive_host = "master"
hive_db = "hive_db"
# hdfs路径
if project_name == 'project_name':
    project_path = f"/project/{project_name}/{hive_db}"
else:
    project_path = f"/project/{project_name}/warehouse/{hive_db}"
# 主要配置
project_config = {
    "project_name": project_name,
    "hive_host": hive_host,
    "hive_port": 10000,
    "project_path": project_path,
    # write:hive数据库
    "hive_db": hive_db,
    "enable_kerberos": True, #是否启用Kerberos
    "enable_partition": False, #是否分区表
    # 默认不用修改
    "default_fs": f"hdfs://{hive_host}:8020",
    "principal": "principal",
    "key_table": "hdfs.keytab" #如果存在Kerberos的话
}
# 不指定表名,则扫描全库
# 抽取的mysql数据源
source_ds = [
    {
        "db_tables": [
            {
                "db": "database",
                "tables": ["view_online"],
            }
        ],
        "connect": {
            "host": "host",
            "port": 23306,
            "username": "username",
            "password": "password",
        }
    }
]

使用方法:

配置DATAX_HOME,将脚本放在$DATAX_HOME/bin,自行创建job文件夹

生成Datax任务json,同时生成的json文件在$DATAX_HOME/job/{hive_database}下面

python3 build_core.py config/config_dw.py

多线程执行

cd $DATAX_HOME
python3 bin/datax_run.py --hive hive_database

--hive 指定hive数据库,指定要执行的json文件路径在$DATAX_HOME/job/{hive_database}

标签: python 大数据 Datax

本文转载自: https://blog.csdn.net/qq_18453581/article/details/137771953
版权归原作者 Zakza 所有, 如有侵权,请联系我们删除。

“DataX自动化生成配置json,创建ODS表,多线程调度脚本[mysql-->hive]”的评论:

还没有评论