0


前端国密4(SM4)加密解密

项目使用到数据加密,选用了国密4,输出文本用了base64包装,网上也看了很多文档,但是都不行,所以自己整理了一下

引入第三方依赖

使用了js-base64依赖,需要提前安装一下,执行

  1. npm install --save js-base64

复制下方代码即可使用

  1. import { toUint8Array, fromUint8Array} from 'js-base64'
  2. const UINT8_BLOCK = 16;
  3. const Sbox = [
  4. 0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7, 0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05,
  5. 0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3, 0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
  6. 0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62,
  7. 0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95, 0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6,
  8. 0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba, 0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8,
  9. 0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b, 0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35,
  10. 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87,
  11. 0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e,
  12. 0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5, 0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1,
  13. 0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55, 0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3,
  14. 0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60, 0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f,
  15. 0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51,
  16. 0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8,
  17. 0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0,
  18. 0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84,
  19. 0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48
  20. ];
  21. const CK = [
  22. 0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
  23. 0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
  24. 0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
  25. 0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
  26. 0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
  27. 0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
  28. 0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
  29. 0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
  30. ];
  31. const FK = [
  32. 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc
  33. ];
  34. /**
  35. * 将字符串转为Unicode数组
  36. * @example "1234" => [49, 50, 51, 52];
  37. * @param {String} str 要转换的字符串
  38. * @returns {Number[]} 转换后的数组
  39. */
  40. const stringToArray = (str: string) => {
  41. if(!/string/gi.test(Object.prototype.toString.call(str))){
  42. str = JSON.stringify(str);
  43. }
  44. //@ts-ignore
  45. return encodeURIComponent(str).split("").map(val => val.charCodeAt());
  46. }
  47. const rotateLeft = (x: number, y: number) => {
  48. return x << y | x >>> (32 - y);
  49. }
  50. const tauTransform = (a: number) => {
  51. return Sbox[a >>> 24 & 0xff] << 24 | Sbox[a >>> 16 & 0xff] << 16 | Sbox[a >>> 8 & 0xff] << 8 | Sbox[a & 0xff];
  52. }
  53. const tTransform1 = (z: number) => {
  54. let b = tauTransform(z);
  55. let c = b ^ rotateLeft(b, 2) ^ rotateLeft(b, 10) ^ rotateLeft(b, 18) ^ rotateLeft(b, 24);
  56. return c
  57. }
  58. const tTransform2 = (z: number) => {
  59. let b = tauTransform(z);
  60. let c = b ^ rotateLeft(b, 13) ^ rotateLeft(b, 23);
  61. return c
  62. }
  63. const EncryptRoundKeys = (key: number[]) => {
  64. const keys = [];
  65. const mk = [
  66. key[0] << 24 | key[1] << 16 | key[2] << 8 | key[3],
  67. key[4] << 24 | key[5] << 16 | key[6] << 8 | key[7],
  68. key[8] << 24 | key[9] << 16 | key[10] << 8 | key[11],
  69. key[12] << 24 | key[13] << 16 | key[14] << 8 | key[15]
  70. ];
  71. let k = new Array(36);
  72. k[0] = mk[0] ^ FK[0];
  73. k[1] = mk[1] ^ FK[1];
  74. k[2] = mk[2] ^ FK[2];
  75. k[3] = mk[3] ^ FK[3];
  76. for (let i = 0; i < 32; i++) {
  77. k[i + 4] = k[i] ^ tTransform2(k[i + 1] ^ k[i + 2] ^ k[i + 3] ^ CK[i]);
  78. keys[i] = k[i + 4];
  79. }
  80. return keys;
  81. }
  82. const getChainBlock = (arr: any[] | Uint8Array | null, baseIndex = 0) => {
  83. if (arr === null) throw new Error('Block is invalid')
  84. let block = [
  85. arr[baseIndex] << 24 | arr[baseIndex + 1] << 16 | arr[baseIndex + 2] << 8 | arr[baseIndex + 3],
  86. arr[baseIndex + 4] << 24 | arr[baseIndex + 5] << 16 | arr[baseIndex + 6] << 8 | arr[baseIndex + 7],
  87. arr[baseIndex + 8] << 24 | arr[baseIndex + 9] << 16 | arr[baseIndex + 10] << 8 | arr[baseIndex + 11],
  88. arr[baseIndex + 12] << 24 | arr[baseIndex + 13] << 16 | arr[baseIndex + 14] << 8 | arr[baseIndex + 15]
  89. ];
  90. return block;
  91. }
  92. const doBlockCrypt = (blockData: any[], roundKeys: any[]) => {
  93. let xBlock = new Array(36);
  94. blockData.forEach((val: any, index: number) => xBlock[index] = val);
  95. // loop to process 32 rounds crypt
  96. for (let i = 0; i < 32; i++) {
  97. xBlock[i + 4] = xBlock[i] ^ tTransform1(xBlock[i + 1] ^ xBlock[i + 2] ^ xBlock[i + 3] ^ roundKeys[i]);
  98. }
  99. let yBlock = [xBlock[35], xBlock[34], xBlock[33], xBlock[32]];
  100. return yBlock;
  101. }
  102. const padding = (originalBuffer: any[] | null) => {
  103. if (originalBuffer === null) {
  104. return null;
  105. }
  106. let paddingLength = UINT8_BLOCK - originalBuffer.length % UINT8_BLOCK;
  107. let paddedBuffer = new Array(originalBuffer.length + paddingLength);
  108. originalBuffer.forEach((val: any, index: number) => paddedBuffer[index] = val);
  109. paddedBuffer.fill(paddingLength, originalBuffer.length);
  110. return paddedBuffer;
  111. }
  112. const dePadding = (paddedBuffer: string | any[] | null) => {
  113. if (paddedBuffer === null) {
  114. return null;
  115. }
  116. let paddingLength = paddedBuffer[paddedBuffer.length - 1];
  117. let originalBuffer = paddedBuffer.slice(0, paddedBuffer.length - paddingLength);
  118. return originalBuffer;
  119. }
  120. const check = (name: string, str: string | any[]) => {
  121. if(!str || str.length != 16){
  122. console.error(`${name} should be a 16 bytes string.`);
  123. return false;
  124. }
  125. return true;
  126. }
  127. /**
  128. * CBC加密模式
  129. * @example encryptCBC("1234", "1234567890123456", "1234567890123456") => "K++iI4IhSGMnEJZT/jv1ow=="
  130. * @param {any} plaintext 要加密的数据
  131. * @param {String} key
  132. * @param {String} iv
  133. * @param {String} mode base64 | "text"
  134. * @returns {String} 加密后的字符串
  135. */
  136. const encryptCBC = (plaintext: string, key: string, iv: string, mode = "base64") => {
  137. if(!check("iv", iv) && !check("key", key)){return;}
  138. let encryptRoundKeys = EncryptRoundKeys(stringToArray(key));
  139. let plainByteArray = stringToArray(plaintext);
  140. let padded = padding(plainByteArray);
  141. if(padded == null) throw new Error('padded is invalid')
  142. let blockTimes = padded.length / UINT8_BLOCK;
  143. let outArray = [];
  144. // init chain with iv (transform to uint32 block)
  145. let chainBlock = getChainBlock(stringToArray(iv));
  146. for (let i = 0; i < blockTimes; i++) {
  147. // extract the 16 bytes block data for this round to encrypt
  148. let roundIndex = i * UINT8_BLOCK;
  149. let block = getChainBlock(padded, roundIndex);
  150. // xor the chain block
  151. chainBlock[0] = chainBlock[0] ^ block[0];
  152. chainBlock[1] = chainBlock[1] ^ block[1];
  153. chainBlock[2] = chainBlock[2] ^ block[2];
  154. chainBlock[3] = chainBlock[3] ^ block[3];
  155. // use chain block to crypt
  156. let cipherBlock = doBlockCrypt(chainBlock, encryptRoundKeys);
  157. // make the cipher block be part of next chain block
  158. chainBlock = cipherBlock;
  159. for (let l = 0; l < UINT8_BLOCK; l++) {
  160. outArray[roundIndex + l] = cipherBlock[Math.floor(l / 4)] >> ((3 - l) % 4 * 8) & 0xff;
  161. }
  162. }
  163. // cipher array to string
  164. if (mode === 'base64') {
  165. return fromUint8Array(new Uint8Array(outArray));
  166. } else {
  167. // text
  168. return decodeURIComponent(String.fromCharCode(...outArray));
  169. }
  170. }
  171. /**
  172. * ECB加密模式
  173. * @example encryptECB("1234", "1234567890123456") => "woPrxebr8Xvyo1qG8QxAUA=="
  174. * @param {any} plaintext 要加密的数据
  175. * @param {String} key
  176. * @param {String} iv
  177. * @param {String} mode base64 | "text"
  178. * @returns {String} 加密后的字符串
  179. */
  180. const encryptECB = (plaintext: string, key: string, mode = "base64") => {
  181. // if(!check("iv", iv)){return;}
  182. let encryptRoundKeys = EncryptRoundKeys(stringToArray(key));
  183. let plainByteArray = stringToArray(plaintext);
  184. let padded = padding(plainByteArray);
  185. if(padded == null) throw new Error('padded is invalid')
  186. let blockTimes = padded.length / UINT8_BLOCK;
  187. let outArray = [];
  188. // CBC mode
  189. // init chain with iv (transform to uint32 block)
  190. for (let i = 0; i < blockTimes; i++) {
  191. // extract the 16 bytes block data for this round to encrypt
  192. let roundIndex = i * UINT8_BLOCK;
  193. let block = getChainBlock(padded, roundIndex);
  194. let cipherBlock = doBlockCrypt(block, encryptRoundKeys);
  195. for (let l = 0; l < UINT8_BLOCK; l++) {
  196. outArray[roundIndex + l] = cipherBlock[Math.floor(l / 4)] >> ((3 - l) % 4 * 8) & 0xff;
  197. }
  198. }
  199. // cipher array to string
  200. if (mode === 'base64') {
  201. return fromUint8Array(new Uint8Array(outArray));
  202. } else {
  203. // text
  204. return decodeURIComponent(String.fromCharCode(...outArray));
  205. }
  206. }
  207. /**
  208. * CBC解密模式
  209. * @example decryptCBC("K++iI4IhSGMnEJZT/jv1ow==", "1234567890123456", "1234567890123456") => "1234"
  210. * @param {any} plaintext 要解密的数据
  211. * @param {String} key
  212. * @param {String} iv
  213. * @param {String} mode base64 | "text"
  214. * @returns {String} 解密后的字符串
  215. */
  216. const decryptCBC = (ciphertext: string, key: string, iv: string, mode = "base64") => {
  217. if(!check("iv", iv) && !check("key", key)){return;}
  218. // get cipher byte array
  219. let cipherByteArray = null;
  220. let decryptRoundKeys = EncryptRoundKeys(stringToArray(key)).reverse();
  221. if (mode === 'base64') {
  222. // cipher is base64 string
  223. cipherByteArray = toUint8Array(ciphertext);
  224. } else {
  225. // cipher is text
  226. cipherByteArray = stringToArray(ciphertext);
  227. }
  228. let blockTimes = cipherByteArray.length / UINT8_BLOCK;
  229. let outArray = [];
  230. // init chain with iv (transform to uint32 block)
  231. let chainBlock = getChainBlock(stringToArray(iv));
  232. for (let i = 0; i < blockTimes; i++) {
  233. // extract the 16 bytes block data for this round to encrypt
  234. let roundIndex = i * UINT8_BLOCK;
  235. // make Uint8Array to Uint32Array block
  236. let block = getChainBlock(cipherByteArray, roundIndex);
  237. // reverse the round keys to decrypt
  238. let plainBlockBeforeXor = doBlockCrypt(block, decryptRoundKeys);
  239. // xor the chain block
  240. let plainBlock = [
  241. chainBlock[0] ^ plainBlockBeforeXor[0],
  242. chainBlock[1] ^ plainBlockBeforeXor[1],
  243. chainBlock[2] ^ plainBlockBeforeXor[2],
  244. chainBlock[3] ^ plainBlockBeforeXor[3]
  245. ];
  246. // make the cipher block be part of next chain block
  247. chainBlock = block;
  248. for (let l = 0; l < UINT8_BLOCK; l++) {
  249. outArray[roundIndex + l] = plainBlock[Math.floor(l / 4)] >> ((3 - l) % 4 * 8) & 0xff;
  250. }
  251. }
  252. // depadding the decrypted data
  253. let depaddedPlaintext = dePadding(outArray);
  254. // transform data to utf8 string
  255. //@ts-ignore
  256. return decodeURIComponent(String.fromCharCode(...depaddedPlaintext));
  257. }
  258. /**
  259. * ECB解密模式
  260. * @example decryptECB("woPrxebr8Xvyo1qG8QxAUA==", "1234567890123456") => "1234"
  261. * @param {any} plaintext 要解密的数据
  262. * @param {String} key
  263. * @param {String} iv
  264. * @param {String} mode base64 | "text"
  265. * @returns {String} 解密后的字符串
  266. */
  267. const decryptECB = (ciphertext: string, key: string, mode = "base64") => {
  268. // if(!check("iv", iv)){return;}
  269. // get cipher byte array
  270. let decryptRoundKeys = EncryptRoundKeys(stringToArray(key)).reverse();
  271. let cipherByteArray = null;
  272. if (mode === 'base64') {
  273. // cipher is base64 string
  274. cipherByteArray = toUint8Array(ciphertext);
  275. } else {
  276. // cipher is text
  277. cipherByteArray = stringToArray(ciphertext);
  278. }
  279. let blockTimes = cipherByteArray.length / UINT8_BLOCK;
  280. let outArray = [];
  281. for (let i = 0; i < blockTimes; i++) {
  282. // extract the 16 bytes block data for this round to encrypt
  283. let roundIndex = i * UINT8_BLOCK;
  284. // make Uint8Array to Uint32Array block
  285. let block = getChainBlock(cipherByteArray, roundIndex);
  286. // reverse the round keys to decrypt
  287. let plainBlock = doBlockCrypt(block, decryptRoundKeys);
  288. for (let l = 0; l < UINT8_BLOCK; l++) {
  289. outArray[roundIndex + l] = plainBlock[Math.floor(l / 4)] >> ((3 - l) % 4 * 8) & 0xff;
  290. }
  291. }
  292. // depadding the decrypted data
  293. let depaddedPlaintext = dePadding(outArray);
  294. // transform data to utf8 string
  295. //@ts-ignore
  296. return decodeURIComponent(String.fromCharCode(...depaddedPlaintext));
  297. }
  298. export {
  299. decryptECB,
  300. encryptECB,
  301. decryptCBC,
  302. encryptCBC,
  303. }
标签: 前端 同态加密

本文转载自: https://blog.csdn.net/lichenglin123/article/details/137006063
版权归原作者 我家有位小可爱 所有, 如有侵权,请联系我们删除。

“前端国密4(SM4)加密解密”的评论:

还没有评论