0


基于docker安装flink

文章目录

  • 环境准备
    • Flink- - docker-compose方式- 二进制部署- Kafka- Mysql
  • Flink 执行 SQL命令
    • 进入SQL客户端CLI- 执行SQL查询- - 表格模式- 变更日志模式- Tableau模式- 窗口计算- 窗口计算- - 滚动窗口demo- 滑动窗口
  • 踩坑

环境准备

Flink

docker-compose方式

version:"3"services:jobmanager:image: flink:latest
    expose:-"6123"ports:-"8081:8081"command: jobmanager
    environment:- JOB_MANAGER_RPC_ADDRESS=jobmanager

  taskmanager:image: flink:latest
    expose:-"6121"-"6122"depends_on:- jobmanager
    command: taskmanager
    links:-"jobmanager:jobmanager"environment:- JOB_MANAGER_RPC_ADDRESS=jobmanager

前端访问地址: http://192.168.56.112:8081/#/overview

二进制部署

wget https://archive.apache.org/dist/flink/flink-1.13.3/flink-1.13.3-bin-scala_2.11.tgz

vim conf/flink-conf.yaml

jobmanager.rpc.address: 192.168.56.112 # 修改为本机ip

./bin/start-cluster.sh

Kafka

version:'2'services:zookeeper:image: wurstmeister/zookeeper   ## 镜像ports:-"2181:2181"## 对外暴露的端口号kafka:image: wurstmeister/kafka       ## 镜像volumes:- /etc/localtime:/etc/localtime ## 挂载位置(kafka镜像和宿主机器之间时间保持一直)ports:-"9092:9092"environment:KAFKA_ADVERTISED_HOST_NAME: 192.168.56.112    ## 修改:宿主机IPKAFKA_ZOOKEEPER_CONNECT: 192.168.56.112:2181## 卡夫卡运行是基于zookeeper的kafka-manager:image: sheepkiller/kafka-manager                ## 镜像:开源的web管理kafka集群的界面environment:ZK_HOSTS:## 修改:宿主机IPports:-"9000:9000"

Mysql

docker run -d-p3306:3306--name=mysql57 -eMYSQL_ROOT_PASSWORD=111111 mysql:5.7

在这里插入图片描述

Flink 执行 SQL命令

进入SQL客户端CLI

dockerexec-it flink_jobmanager_1  /bin/bash

./bin/sql-client.sh

在这里插入图片描述

执行SQL查询

SELECT 'Hello World';

在这里插入图片描述

表格模式

表格模式(table mode)在内存中物化结果,并将结果用规则的分页表格的形式可视化展示出来。执行如下命令启用:

SET sql-client.execution.result-mode = table;

可以使用如下查询语句查看不同模式的的运行结果:

SELECT name,COUNT(*)AS cnt FROM(VALUES('Bob'),('Alice'),('Greg'),('Bob'))AS NameTable(name)GROUPBY name;

在这里插入图片描述

变更日志模式

变更日志模式(changelog mode)不会物化结果。可视化展示由插入(+)和撤销(-)组成的持续查询结果流。

SET sql-client.execution.result-mode = changelog;

在这里插入图片描述

Tableau模式

Tableau模式(tableau mode)更接近传统的数据库,会将执行的结果以制表的形式直接打在屏幕之上。具体显示的内容取决于作业执行模式(execution.type):

SET sql-client.execution.result-mode = tableau;

在这里插入图片描述

注意:当你在流式查询上使用这种模式时,Flink 会将结果持续的打印在当前的控制台上。如果流式查询的输入是有限数据集,那么 Flink 在处理完所有的输入数据之后,作业会自动停止,同时控制台上的打印也会自动停止。如果你想提前结束这个查询,那么可以直接使用 CTRL-C 按键,这个会停止作业同时停止在控制台上的打印。

窗口计算

TUMBLE(time_attr, interval) 定义一个滚动窗口。滚动窗口把行分配到有固定持续时间( interval )的不重叠的连续窗口。比如,5 分钟的滚动窗口以 5 分钟为间隔对行进行分组。滚动窗口可以定义在事件时间(批处理、流处理)或处理时间(流处理)上。

窗口计算

TUMBLE(time_attr, interval) 定义一个滚动窗口。滚动窗口把行分配到有固定持续时间( interval )的不重叠的连续窗口。比如,5 分钟的滚动窗口以 5 分钟为间隔对行进行分组。滚动窗口可以定义在事件时间(批处理、流处理)或处理时间(流处理)上。

滚动窗口demo

根据订单信息使用kafka作为数据源表,JDBC作为数据结果表统计用户在5秒内的订单数量,并根据窗口的订单id和窗口开启时间作为主键,将结果实时统计到JDBC中:

  1. 在MySQL的flink数据库下创建表order_count,创建语句如下:
CREATE TABLE `flink`.`order_count` (
        `user_id` VARCHAR(32) NOT NULL,
        `window_start` TIMESTAMP NOT NULL,
        `window_end` TIMESTAMP NULL,
        `total_num` BIGINT UNSIGNED NULL,
        PRIMARY KEY (`user_id`, `window_start`)
)        ENGINE = InnoDB
        DEFAULT CHARACTER SET = utf8mb4
        COLLATE = utf8mb4_general_ci;
  1. 创建flink opensource sql作业,并提交运行作业
CREATE TABLE orders (
  order_id string,
  order_channel string,
  order_time timestamp(3),
  pay_amount double,
  real_pay double,
  pay_time string,
  user_id string,
  user_name string,
  area_id string,
  watermark for order_time as order_time - INTERVAL '3' SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 'order_topic',
  'properties.bootstrap.servers' = '192.168.56.112:9092',
  'properties.group.id' = 'order_group',
  'scan.startup.mode' = 'latest-offset',
  'format' = 'json'
);

CREATE TABLE jdbcSink (
  user_id string,
  window_start timestamp(3),
  window_end timestamp(3),
  total_num BIGINT,
  primary key (user_id, window_start) not enforced
) WITH (
  'connector' = 'jdbc',
  'url' = 'jdbc:mysql://192.168.56.112:3306/flink',
  'table-name' = 'order_count',
  'username' = 'root',
  'password' = '111111',
  'sink.buffer-flush.max-rows' = '1'
);

SELECT 
    'WINDOW',-- window_start,window_end,
    group_key,record_num,create_time,
    SUM(record_num) OVER w AS sum_amount
FROM temp
WINDOW w AS (
  PARTITION BY group_key
  ORDER BY rowtime
  RANGE BETWEEN INTERVAL '10' SECOND PRECEDING AND CURRENT ROW)
  
select 
    user_id,
    TUMBLE_START(order_time, INTERVAL '5' SECOND),
    TUMBLE_END(order_time, INTERVAL '5' SECOND),
    COUNT(*) from orders
    GROUP BY user_id, TUMBLE(order_time, INTERVAL '5' SECOND) having count(*) > 3;
    
SELECT 
    'WINDOW',
    user_id,order_id,real_pay,order_time
    COUNT(*) OVER w AS sum_amount
FROM orders
WINDOW w AS (
  PARTITION BY user_id
  ORDER BY order_time
  RANGE BETWEEN INTERVAL '60' SECOND PRECEDING AND CURRENT ROW) 
    

insert into jdbcSink select 
    user_id,
    TUMBLE_START(order_time, INTERVAL '5' SECOND),
    TUMBLE_END(order_time, INTERVAL '5' SECOND),
    COUNT(*) from orders
    GROUP BY user_id, TUMBLE(order_time, INTERVAL '5' SECOND) having count(*) > 3;
  1. Kafka 相关操作
bin/kafka-topics.sh --zookeeper 192.168.56.112:2181 --list

bin/kafka-topics.sh --zookeeper 192.168.56.112:2181 --create --replication-factor 1 --partitions 1 --topic order_topic

bin/kafka-console-producer.sh --broker-list 192.168.56.112:9092 --topic order_topic

bin/kafka-console-consumer.sh --bootstrap-server 192.168.56.112:9092 --topic order_topic --from-beginning

bin/kafka-topics.sh --zookeeper 192.168.56.112:2181 --describe --topic order_topic 

bin/kafka-topics.sh --zookeeper 192.168.56.112:2181 --delete --topic order_topic 

发送数据样例

{"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2023-09-26 15:20:11", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
{"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2023-08-10 17:28:10", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
{"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2023-08-10 17:29:10", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
{"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2023-08-10 17:29:10", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
{"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2023-08-10 17:29:10", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
{"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2023-08-10 17:30:10", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}
{"order_id":"202103241000000001", "order_channel":"webShop", "order_time":"2023-08-10 17:30:10", "pay_amount":"100.00", "real_pay":"100.00", "pay_time":"2021-03-24 10:02:03", "user_id":"0001", "user_name":"Alice", "area_id":"330106"}

滑动窗口

SELECT * FROM TABLE(
    HOP(TABLE orders, DESCRIPTOR(order_time), INTERVAL '2' SECOND, INTERVAL '10' SECOND));

SELECT * FROM TABLE(
    HOP(
      DATA => TABLE orders,
      TIMECOL => DESCRIPTOR(order_time),
      SLIDE => INTERVAL '5' MINUTES,
      SIZE => INTERVAL '10' MINUTES));
      
      
SELECT window_start, window_end, SUM(pay_amount)
  FROM TABLE(
    HOP(TABLE orders, DESCRIPTOR(order_time), INTERVAL '2' SECOND, INTERVAL '10' SECOND))
  GROUP BY window_start, window_end;

踩坑

  1. Could not find any factory for identifier ‘kafka’ that implements ‘org.apache.flink.table.factories.DynamicTableFactory’ in the classpath.

查看flink version

flink-sql-connector-kafka-1.17.1.jar

https://mvnrepository.com/artifact/org.apache.flink/flink-sql-connector-kafka/1.17.1

下载对应版本jar,放到lib目录下,重启

  1. Could not find any factory for identifier ‘jdbc’ that implements 'org.apache.flink.table.factories.DynamicTableFactory flink-connector-jdbc-3.1.0-1.17.jar https://repo1.maven.org/maven2/org/apache/flink/flink-connector-jdbc/3.1.0-1.17/flink-connector-jdbc-3.1.0-1.17.jar
  2. Caused by: java.lang.ClassNotFoundException: com.mysql.jdbc.Driver

https://mvnrepository.com/artifact/com.mysql/mysql-connector-j/8.0.31

标签: docker flink

本文转载自: https://blog.csdn.net/qq_37362891/article/details/138570606
版权归原作者 it噩梦 所有, 如有侵权,请联系我们删除。

“基于docker安装flink”的评论:

还没有评论