注意:本文参考 ZooKeeper 相关概念总结(进阶) | JavaGuide
实例详解ZooKeeper ZAB协议、分布式锁与领导选举 - 架构 - dbaplus社群:围绕Data、Blockchain、AiOps的企业级专业社群。技术大咖、原创干货,每天精品原创文章推送,每周线上技术分享,每月线下技术沙龙。
面试官:说一下Zookeeper的ZAB协议?敖丙:不好意思我肚子疼!
Zookeeper夺命连环9问
一致性协议和算法
而为了解决数据一致性问题,在科学家和程序员的不断探索中,就出现了很多的一致性协议和算法。比如 2PC(两阶段提交),3PC(三阶段提交),Paxos算法等等。
这时候请你思考一个问题,同学之间如果采用传纸条的方式去传播消息,那么就会出现一个问题——我咋知道我的小纸条有没有传到我想要传递的那个人手中呢?万一被哪个小家伙给劫持篡改了呢,对吧?
这个时候就引申出一个概念—— 拜占庭将军问题 。它意指 在不可靠信道上试图通过消息传递的方式达到一致性是不可能的, 所以所有的一致性算法的 必要前提 就是安全可靠的消息通道。
而为什么要去解决数据一致性的问题?你想想,如果一个秒杀系统将服务拆分成了下订单和加积分服务,这两个服务部署在不同的机器上了,万一在消息的传播过程中积分系统宕机了,总不能你这边下了订单却没加积分吧?你总得保证两边的数据需要一致吧?
2PC(两阶段提交)
两阶段提交是一种保证分布式系统数据一致性的协议,现在很多数据库都是采用的两阶段提交协议来完成 分布式事务 的处理。
在介绍2PC之前,我们先来想想分布式事务到底有什么问题呢?
还拿秒杀系统的下订单和加积分两个系统来举例吧(我想你们可能都吐了),我们此时下完订单会发个消息给积分系统告诉它下面该增加积分了。如果我们仅仅是发送一个消息也不收回复,那么我们的订单系统怎么能知道积分系统的收到消息的情况呢?如果我们增加一个收回复的过程,那么当积分系统收到消息后返回给订单系统一个
Response
,但在中间出现了网络波动,那个回复消息没有发送成功,订单系统是不是以为积分系统消息接收失败了?它是不是会回滚事务?但此时积分系统是成功收到消息的,它就会去处理消息然后给用户增加积分,这个时候就会出现积分加了但是订单没下成功。
所以我们所需要解决的是在分布式系统中,整个调用链中,我们所有服务的数据处理要么都成功要么都失败,即所有服务的 原子性问题 。
在两阶段提交中,主要涉及到两个角色,分别是协调者和参与者。
第一阶段:当要执行一个分布式事务的时候,事务发起者首先向协调者发起事务请求,然后协调者会给所有参与者发送
prepare
请求(其中包括事务内容)告诉参与者你们需要执行事务了,如果能执行我发的事务内容那么就先执行但不提交,执行后请给我回复。然后参与者收到
prepare
消息后,他们会开始执行事务(但不提交),并将
Undo
和
Redo
信息记入事务日志中,之后参与者就向协调者反馈是否准备好了。
第二阶段:第二阶段主要是协调者根据参与者反馈的情况来决定接下来是否可以进行事务的提交操作,即提交事务或者回滚事务。
比如这个时候 所有的参与者 都返回了准备好了的消息,这个时候就进行事务的提交,协调者此时会给所有的参与者发送 **
Commit
请求** ,当参与者收到
Commit
请求的时候会执行前面执行的事务的 提交操作 ,提交完毕之后将给协调者发送提交成功的响应。
而如果在第一阶段并不是所有参与者都返回了准备好了的消息,那么此时协调者将会给所有参与者发送 **回滚事务的
rollback
请求**,参与者收到之后将会 回滚它在第一阶段所做的事务处理 ,然后再将处理情况返回给协调者,最终协调者收到响应后便给事务发起者返回处理失败的结果。
个人觉得 2PC 实现得还是比较鸡肋的,因为事实上它只解决了各个事务的原子性问题,随之也带来了很多的问题。
单点故障问题,如果协调者挂了那么整个系统都处于不可用的状态了。
阻塞问题,即当协调者发送
prepare
请求,参与者收到之后如果能处理那么它将会进行事务的处理但并不提交,这个时候会一直占用着资源不释放,如果此时协调者挂了,那么这些资源都不会再释放了,这会极大影响性能。
数据不一致问题,比如当第二阶段,协调者只发送了一部分的
commit
请求就挂了,那么也就意味着,收到消息的参与者会进行事务的提交,而后面没收到的则不会进行事务提交,那么这时候就会产生数据不一致性问题。
3PC(三阶段提交)
因为2PC存在的一系列问题,比如单点,容错机制缺陷等等,从而产生了 3PC(三阶段提交) 。那么这三阶段又分别是什么呢?
千万不要吧PC理解成个人电脑了,其实他们是 phase-commit 的缩写,即阶段提交。
CanCommit阶段:协调者向所有参与者发送
CanCommit
请求,参与者收到请求后会根据自身情况查看是否能执行事务,如果可以则返回 YES 响应并进入预备状态,否则返回 NO 。
PreCommit阶段:协调者根据参与者返回的响应来决定是否可以进行下面的
PreCommit
操作。如果上面参与者返回的都是 YES,那么协调者将向所有参与者发送
PreCommit
预提交请求,**参与者收到预提交请求后,会进行事务的执行操作,并将
Undo
和
Redo
信息写入事务日志中** ,最后如果参与者顺利执行了事务则给协调者返回成功的响应。如果在第一阶段协调者收到了 任何一个 NO 的信息,或者 在一定时间内 并没有收到全部的参与者的响应,那么就会中断事务,它会向所有参与者发送中断请求(abort),参与者收到中断请求之后会立即中断事务,或者在一定时间内没有收到协调者的请求,它也会中断事务。
DoCommit阶段:这个阶段其实和
2PC
的第二阶段差不多,如果协调者收到了所有参与者在
PreCommit
阶段的 YES 响应,那么协调者将会给所有参与者发送
DoCommit
请求,**参与者收到
DoCommit
请求后则会进行事务的提交工作**,完成后则会给协调者返回响应,协调者收到所有参与者返回的事务提交成功的响应之后则完成事务。若协调者在
PreCommit
阶段 收到了任何一个 NO 或者在一定时间内没有收到所有参与者的响应 ,那么就会进行中断请求的发送,参与者收到中断请求后则会 通过上面记录的回滚日志 来进行事务的回滚操作,并向协调者反馈回滚状况,协调者收到参与者返回的消息后,中断事务。
这里是
3PC
在成功的环境下的流程图,你可以看到
3PC
在很多地方进行了超时中断的处理,比如协调者在指定时间内为收到全部的确认消息则进行事务中断的处理,这样能 减少同步阻塞的时间 。还有需要注意的是,**
3PC
在
DoCommit
阶段参与者如未收到协调者发送的提交事务的请求,它会在一定时间内进行事务的提交。为什么这么做呢?是因为这个时候我们肯定保证了在第一阶段所有的协调者全部返回了可以执行事务的响应,这个时候我们有理由相信其他系统都能进行事务的执行和提交,所以不管**协调者有没有发消息给参与者,进入第三阶段参与者都会进行事务的提交操作。
总之,**
3PC
通过一系列的超时机制很好的缓解了阻塞问题,但是最重要的一致性并没有得到根本的解决,比如在
PreCommit
阶段,当一个参与者收到了请求之后其他参与者和协调者挂了或者出现了网络分区,这个时候收到消息的参与者都会进行事务提交,这就会出现数据不一致性问题。**
所以,要解决一致性问题还需要靠
Paxos
算法
Paxos 算法
Paxos 算法是基于消息传递且具有高度容错特性的一致性算法,是目前公认的解决分布式一致性问题最有效的算法之一,其解决的问题就是在分布式系统中如何就某个值(决议)达成一致 。
在 Paxos 中主要有三个角色,分别为 Proposer提案者、Acceptor表决者、Learner学习者。Paxos 算法和 2PC 一样,也有两个阶段,分别为 Prepare 和 accept 阶段。
prepare 阶段
Proposer提案者:负责提出 proposal,每个提案者在提出提案时都会首先获取到一个 具有全局唯一性的、递增的提案编号N,即在整个集群中是唯一的编号 N,然后将该编号赋予其要提出的提案,在第一阶段是只将提案编号发送给所有的表决者。
Acceptor表决者:每个表决者在 accept 某提案后,会将该提案编号N记录在本地,这样每个表决者中保存的已经被 accept 的提案中会存在一个编号最大的提案,其编号假设为 maxN。每个表决者仅会 accept 编号大于自己本地 maxN 的提案,在批准提案时表决者会将以前接受过的最大编号的提案作为响应反馈给 Proposer 。
下面是 prepare 阶段的流程图,你可以对照着参考一下。
accept 阶段
当一个提案被
Proposer
提出后,如果
Proposer
收到了超过半数的
Acceptor
的批准(
Proposer
本身同意),那么此时
Proposer
会给所有的
Acceptor
发送真正的提案(你可以理解为第一阶段为试探),这个时候
Proposer
就会发送提案的内容和提案编号。
表决者收到提案请求后会再次比较本身已经批准过的最大提案编号和该提案编号,如果该提案编号 大于等于 已经批准过的最大提案编号,那么就
accept
该提案(此时执行提案内容但不提交),随后将情况返回给
Proposer
。如果不满足则不回应或者返回 NO 。
当
Proposer
收到超过半数的
accept
,那么它这个时候会向所有的
acceptor
发送提案的提交请求。需要注意的是,因为上述仅仅是超过半数的
acceptor
批准执行了该提案内容,其他没有批准的并没有执行该提案内容,所以这个时候需要**向未批准的
acceptor
发送提案内容和提案编号并让它无条件执行和提交**,而对于前面已经批准过该提案的
acceptor
来说 仅仅需要发送该提案的编号 ,让
acceptor
执行提交就行了。
而如果
Proposer
如果没有收到超过半数的
accept
那么它将会将 递增 该
Proposal
的编号,然后 **重新进入
Prepare
阶段** 。
对于
Learner
来说如何去学习
Acceptor
批准的提案内容,这有很多方式,读者可以自己去了解一下,这里不做过多解释。
paxos
算法的死循环问题
其实就有点类似于两个人吵架,小明说我是对的,小红说我才是对的,两个人据理力争的谁也不让谁。
比如说,此时提案者 P1 提出一个方案 M1,完成了
Prepare
阶段的工作,这个时候
acceptor
则批准了 M1,但是此时提案者 P2 同时也提出了一个方案 M2,它也完成了
Prepare
阶段的工作。然后 P1 的方案已经不能在第二阶段被批准了(因为
acceptor
已经批准了比 M1 更大的 M2),所以 P1 自增方案变为 M3 重新进入
Prepare
阶段,然后
acceptor
,又批准了新的 M3 方案,它又不能批准 M2 了,这个时候 M2 又自增进入
Prepare
阶段。。。
就这样无休无止的永远提案下去,这就是
paxos
算法的死循环问题。
那么如何解决呢?很简单,人多了容易吵架,我现在 就允许一个能提案 就行了。
引出 ZAB
ZooKeeper 集群
为了保证高可用,最好是以集群形态来部署 ZooKeeper,这样只要集群中大部分机器是可用的(能够容忍一定的机器故障),那么 ZooKeeper 本身仍然是可用的。通常 3 台服务器就可以构成一个 ZooKeeper 集群了。ZooKeeper 官方提供的架构图就是一个 ZooKeeper 集群整体对外提供服务。
上图中每一个 Server 代表一个安装 ZooKeeper 服务的服务器。组成 ZooKeeper 服务的服务器都会在内存中维护当前的服务器状态,并且每台服务器之间都互相保持着通信。集群间通过 ZAB 协议(ZooKeeper Atomic Broadcast)来保持数据的一致性。
最典型集群模式:** Master/Slave 模式(主备模式)。在这种模式中,通常 Master 服务器作为主服务器提供写服务,其他的 Slave 服务器从服务器通过异步复制的方式获取 Master 服务器最新的数据提供读服务。**
Zookeeper 架构
作为一个优秀高效且可靠的分布式协调框架,**ZooKeeper 在解决分布式数据一致性问题时并没有直接使用 Paxos ,而是专门定制了一致性协议叫做 ZAB(ZooKeeper Atomic Broadcast) 原子广播协议,该协议能够很好地支持 崩溃恢复 **。
为了保证写操作的一致性与可用性,ZooKeeper专门设计了一种名为原子广播(ZAB)的支持崩溃恢复的一致性协议。基于该协议,ZooKeeper实现了一种主从模式的系统架构来保持集群中各个副本之间的数据一致性。
根据ZAB协议,所有的写操作都必须通过Leader完成,Leader写入本地日志后再复制到所有的Follower节点。
一旦Leader节点无法工作,ZAB协议能够自动从Follower节点中重新选出一个合适的替代者,即新的Leader,该过程即为领导选举。该领导选举过程,是ZAB协议中最为重要和复杂的过程。
ZAB 中的三个角色
和介绍 Paxos 一样,在介绍 ZAB 协议之前,我们首先来了解一下在 ZAB 中三个主要的角色,Leader 领导者、Follower跟随者、Observer观察者 。
Leader :集群中 唯一的写请求处理者 ,能够发起投票(投票也是为了进行写请求)。
Follower:能够接收客户端的请求,如果是读请求则可以自己处理,如果是写请求则要转发给Leader 。在选举过程中会参与投票,有选举权和被选举权 。
Observer :就是没有选举权和被选举权的 Follower 。
ZooKeeper 集群中的所有机器通过一个 Leader 选举过程 来选定一台称为 “Leader” 的机器,Leader 既可以为客户端提供写服务又能提供读服务。
除了 Leader 外,Follower 和 Observer 都只能提供读服务。Follower 和 Observer 唯一的区别在于 Observer 机器不参与 Leader 的选举过程,也不参与写操作的“过半写成功”策略,因此 Observer 机器可以在不影响写性能的情况下提升集群的读性能。
在 ZAB 协议中对 zkServer(即上面我们说的三个角色的总称) 还有两种模式的定义,分别是 消息广播 和 崩溃恢复 。
选举的4个阶段
当 Leader 服务器出现网络中断、崩溃退出与重启等异常情况时,就会进入 Leader 选举过程,这个过程会选举产生新的 Leader 服务器。
这个过程大致是这样的:
Leader election(选举阶段):节点在一开始都处于选举阶段,只要有一个节点得到超半数节点的票数,它就可以当选准 leader。
Discovery(发现阶段) :在这个阶段,followers 跟准 leader 进行通信,同步 followers 最近接收的事务提议。
Synchronization(同步阶段) :同步阶段主要是利用 leader 前一阶段获得的最新提议历史,同步集群中所有的副本。同步完成之后 准 leader 才会成为真正的 leader。
Broadcast(广播阶段) :到了这个阶段,ZooKeeper 集群才能正式对外提供事务服务,并且 leader 可以进行消息广播。同时如果有新的节点加入,还需要对新节点进行同步。
ZooKeeper 集群中的服务器状态
**LOOKING **:寻找 Leader。
**LEADING **:Leader 状态,对应的节点为 Leader。
FOLLOWING :Follower 状态,对应的节点为 Follower。
OBSERVING :Observer 状态,对应节点为 Observer,该节点不参与 Leader 选举。
ZooKeeper 集群为啥最好奇数台?
ZooKeeper 集群在宕掉几个 ZooKeeper 服务器之后,如果剩下的 ZooKeeper 服务器个数大于宕掉的个数的话整个 ZooKeeper 才依然可用。假如我们的集群中有 n 台 ZooKeeper 服务器,那么也就是剩下的服务数必须大于 n/2。先说一下结论,2n 和 2n-1 的容忍度是一样的,都是 n-1,大家可以先自己仔细想一想,这应该是一个很简单的数学问题了。
比如假如我们有 3 台,那么最大允许宕掉 1 台 ZooKeeper 服务器,如果我们有 4 台的的时候也同样只允许宕掉 1 台。 假如我们有 5 台,那么最大允许宕掉 2 台 ZooKeeper 服务器,如果我们有 6 台的的时候也同样只允许宕掉 2 台。
综上,何必增加那一个不必要的 ZooKeeper 呢?
ZooKeeper 选举的过半机制防止脑裂
何为集群脑裂?
对于一个集群,通常多台机器会部署在不同机房,来提高这个集群的可用性。保证可用性的同时,会发生一种机房间网络线路故障,导致机房间网络不通,而集群被割裂成几个小集群。这时候子集群各自选主导致“脑裂”的情况。
举例说明:比如现在有一个由 6 台服务器所组成的一个集群,部署在了 2 个机房,每个机房 3 台。正常情况下只有 1 个 leader,但是当两个机房中间网络断开的时候,每个机房的 3 台服务器都会认为另一个机房的 3 台服务器下线,而选出自己的 leader 并对外提供服务。若没有过半机制,当网络恢复的时候会发现有 2 个 leader。仿佛是 1 个大脑(leader)分散成了 2 个大脑,这就发生了脑裂现象。脑裂期间 2 个大脑都可能对外提供了服务,这将会带来数据一致性等问题。
过半机制是如何防止脑裂现象产生的?
ZooKeeper 的过半机制导致不可能产生 2 个 leader,因为少于等于一半是不可能产生 leader 的,这就使得不论机房的机器如何分配都不可能发生脑裂。
ZAB的消息传播与数据一致性
Zookeeper通过ZAB原子广播协议来实现数据的最终顺序一致性,他是一个类似2PC两阶段提交的过程。
写Leader
通过Leader进行写操作流程如下图所示:
由上图可见,通过Leader进行写操作,主要分为五步:
客户端向Leader发起写请求
Leader将写请求以Proposal的形式发给所有Follower并等待ACK
Follower收到Leader的Proposal后返回ACK
Leader得到过半数的ACK(Leader对自己默认有一个ACK)后向所有的Follower和Observer发送Commmit
Leader将处理结果返回给客户端
这里要注意:
Leader并不需要得到Observer的ACK,即Observer无投票权
Leader不需要得到所有Follower的ACK,只要收到过半的ACK即可,同时Leader本身对自己有一个ACK。上图中有4个Follower,只需其中两个返回ACK即可,因为(2+1) / (4+1) > 1/2
Observer虽然无投票权,但仍须同步Leader的数据从而在处理读请求时可以返回尽可能新的数据
写Follower/Observer
通过Follower/Observer进行写操作流程如下图所示:
从上图可见:
Follower/Observer均可接受写请求,但不能直接处理,而需要将写请求转发给Leader处理
除了多了一步请求转发,其它流程与直接写Leader无任何区别
读操作
Leader/Follower/Observer都可直接处理读请求,从本地内存中读取数据并返回给客户端即可。
广播的有序性
zab在广播状态中保证以下特征
可靠传递: 如果消息m由一台服务器传递,那么它最终将由所有服务器传递。
全局有序: 如果一个消息a在消息b之前被一台服务器交付,那么所有服务器都交付了a和b,并且a先于b。
因果有序: 如果消息a在因果上先于消息b并且二者都被交付,那么a必须排在b之前。
有序性是zab协议必须要保证的一个很重要的属性,因为zookeeper是以类似目录结构的数据结构存储数据的,必须要求命名的有序性。
比如一个命名a创建路径为/test,然后命名b创建路径为/test/123,如果不能保证有序性b命名在a之前,b命令会因为父节点不存在而创建失败。
如上图所示,整个写请求类似一个二阶段的提交。
当收到客户端的写请求的时候会经历以下几个步骤:
1 Leader收到客户端的写请求,生成一个事务(Proposal),其中包含了zxid;
2 Leader开始广播该事务,需要注意的是所有节点的通讯都是由一个FIFO的队列维护的;
3 Follower接受到事务之后,将事务写入本地磁盘,写入成功之后返回Leader一个ACK;
4 Leader收到过半的ACK之后,开始提交本事务,并广播事务提交信息
5 从节点开始提交本事务。
有以上流程可知,zookeeper通过二阶段提交来保证集群中数据的一致性,因为只需要收到过半的ACK就可以提交事务,所以zookeeper的数据并不是强一致性。
zab协议的有序性保证是通过几个方面来体现的,
第一是,服务之前用TCP协议进行通讯,保证在网络传输中的有序性;
第二,节点之前都维护了一个FIFO的队列,保证全局有序性;
第三,通过全局递增的zxid保证因果有序性。
ZooKeeper数据不一致问题
有可能会出现数据不一致的问题吗?
还是会存在的,我们可以分成3个场景来描述这个问题。
查询不一致
因为Zookeeper是过半成功即代表成功,假设我们有5个节点,如果123节点写入成功,如果这时候请求访问到4或者5节点,那么有可能读取不到数据,因为可能数据还没有同步到4、5节点中,也可以认为这算是数据不一致的问题。
解决方案可以在读取前使用sync命令。
leader未发送proposal宕机
这也就是数据同步说过的问题。
leader刚生成一个proposal,还没有来得及发送出去,此时leader宕机,重新选举之后作为follower,但是新的leader没有这个proposal。
这种场景下的日志将会被丢弃。
leader发送proposal成功,发送commit前宕机
如果发送proposal成功了,但是在将要发送commit命令前宕机了,如果重新进行选举,还是会选择zxid最大的节点作为leader,因此,这个日志并不会被丢弃,会在选举出leader之后重新同步到其他节点当中。
消息广播模式总结
说白了就是 ZAB 协议是如何处理写请求的,上面我们不是说只有 Leader 能处理写请求嘛?那么我们的 Follower 和 Observer 是不是也需要 同步更新数据 呢?总不能数据只在 Leader 中更新了,其他角色都没有得到更新吧?
不就是 在整个集群中保持数据的一致性 嘛?如果是你,你会怎么做呢?
废话,第一步肯定需要 Leader 将写请求 广播 出去呀,让 Leader 问问 Followers 是否同意更新,如果超过半数以上的同意那么就进行 Follower 和 Observer 的更新(和 Paxos 一样)。当然这么说有点虚,画张图理解一下。
嗯。。。看起来很简单,貌似懂了。**这两个 Queue 哪冒出来的?答案是 ZAB 需要让 Follower 和 Observer 保证顺序性 **。何为顺序性,比如我现在有一个写请求A,此时 Leader 将请求A广播出去,因为只需要半数同意就行,所以可能这个时候有一个 Follower F1因为网络原因没有收到,而 Leader 又广播了一个请求B,因为网络原因,F1竟然先收到了请求B然后才收到了请求A,这个时候请求处理的顺序不同就会导致数据的不同,从而 产生数据不一致问题 。
所以在 Leader 这端,它为每个其他的 zkServer 准备了一个 队列 ,采用先进先出的方式发送消息。由于协议是 通过 TCP 来进行网络通信的,保证了消息的发送顺序性,接受顺序性也得到了保证。
除此之外,在 ZAB 中还定义了一个 全局单调递增的事务ID ZXID ,它是一个64位long型,其中高32位表示 epoch 年代,低32位表示事务id。epoch 是会根据 Leader 的变化而变化的,当一个 Leader 挂了,新的 Leader 上位的时候,年代(epoch)就变了。而低32位可以简单理解为递增的事务id。
定义这个的原因也是为了顺序性,每个 proposal 在 Leader 中生成后需要 通过其 ZXID 来进行排序 ,才能得到处理。
ZAB的选举
支持的领导选举算法
可通过electionAlg配置项设置ZooKeeper用于领导选举的算法。
到3.4.10版本为止,可选项有:
0 基于UDP的LeaderElection
1 基于UDP的FastLeaderElection
2 基于UDP和认证的FastLeaderElection
3 基于TCP的FastLeaderElection
在3.4.10版本中,默认值为3,也即基于TCP的FastLeaderElection。另外三种算法已经被弃用,并且有计划在之后的版本中将它们彻底删除而不再支持。
FastLeaderElection理论与流程
1、myid
每个ZooKeeper服务器,都需要在数据文件夹下创建一个名为myid的文件,该文件包含整个ZooKeeper集群唯一的ID(整数)。例如,某ZooKeeper集群包含三台服务器,hostname分别为zoo1、zoo2和zoo3,其myid分别为1、2和3,则在配置文件中其ID与hostname必须一一对应,如下所示。在该配置文件中,server.后面的数据即为myid
server.1=zoo1:2888:3888
server.2=zoo2:2888:3888
server.3=zoo3:2888:3888
2、zxid
类似于RDBMS中的事务ID,用于标识一次更新操作的Proposal ID。为了保证顺序性,该zkid必须单调递增。因此ZooKeeper使用一个64位的数来表示,高32位是Leader的epoch,从1开始,每次选出新的Leader,epoch加一。低32位为该epoch内的序号,每次epoch变化,都将低32位的序号重置。这样保证了zkid的全局递增性。
3、服务器状态
LOOKING 不确定Leader状态。该状态下的服务器认为当前集群中没有Leader,会发起Leader选举。
FOLLOWING 跟随者状态。表明当前服务器角色是Follower,并且它知道Leader是谁。
LEADING 领导者状态。表明当前服务器角色是Leader,它会维护与Follower间的心跳。
OBSERVING 观察者状态。表明当前服务器角色是Observer,与Folower唯一的不同在于不参与选举,也不参与集群写操作时的投票。
4、选票数据结构
每个服务器在进行领导选举时,会发送如下关键信息:
logicClock 每个服务器会维护一个自增的整数,名为logicClock,它表示这是该服务器发起的第多少轮投票
state 当前服务器的状态
self_id 当前服务器的myid
self_zxid 当前服务器上所保存的数据的最大zxid
vote_id 被推举的服务器的myid
vote_zxid 被推举的服务器上所保存的数据的最大zxid
5、选举发生的时机
Leader发生选举有两个时机,一个是服务启动的时候当整个集群都没有leader节点会进入选举状态,如果leader已经存在就会告诉该节点leader的信息,自己连接上leader,整个集群不用进入选举状态。
还有一个就是在服务运行中,可能会出现各种情况,服务宕机、断电、网络延迟很高的时候leader都不能再对外提供服务了,所有当其他几点通过心跳检测到leader失联之后,集群也会进入选举状态。
6、投票流程
自增选举轮次
ZooKeeper规定所有有效的投票都必须在同一轮次中。每个服务器在开始新一轮投票时,会先对自己维护的logicClock进行自增操作。
初始化选票
每个服务器在广播自己的选票前,会将自己的投票箱清空。该投票箱记录了所收到的选票。例:服务器2投票给服务器3,服务器3投票给服务器1,则服务器1的投票箱为(2, 3), (3, 1), (1, 1)。票箱中只会记录每一投票者的最后一票,如投票者更新自己的选票,则其它服务器收到该新选票后会在自己票箱中更新该服务器的选票。
发送初始化选票
每个服务器最开始都是通过广播把票投给自己。
接收外部投票
服务器会尝试从其它服务器获取投票,并记入自己的投票箱内。如果无法获取任何外部投票,则会确认自己是否与集群中其它服务器保持着有效连接。如果是,则再次发送自己的投票;如果否,则马上与之建立连接。
判断选举轮次
收到外部投票后,首先会根据投票信息中所包含的logicClock来进行不同处理:
外部投票的logicClock大于自己的logicClock。说明该服务器的选举轮次落后于其它服务器的选举轮次,立即清空自己的投票箱并将自己的logicClock更新为收到的logicClock,然后再对比自己之前的投票与收到的投票以确定是否需要变更自己的投票,最终再次将自己的投票广播出去。
外部投票的logicClock小于自己的logicClock。当前服务器直接忽略该投票,继续处理下一个投票。外部投票的logickClock与自己的相等。当时进行选票PK。
选票PK
选票PK是基于(self_id, self_zxid)与(vote_id, vote_zxid)的对比:
外部投票的logicClock大于自己的logicClock,则将自己的logicClock及自己的选票的logicClock变更为收到的logicClock
若logicClock一致,则对比二者的vote_zxid,若外部投票的vote_zxid比较大,则将自己的票中的vote_zxid与vote_myid更新为收到的票中的vote_zxid与vote_myid并广播出去,另外将收到的票及自己更新后的票放入自己的票箱。如果票箱内已存在(self_myid, self_zxid)相同的选票,则直接覆盖
若二者vote_zxid一致,则比较二者的vote_myid,若外部投票的vote_myid比较大,则将自己的票中的vote_myid更新为收到的票中的vote_myid并广播出去,另外将收到的票及自己更新后的票放入自己的票箱
/*
* We return true if one of the following three cases hold:
* 1- New epoch is higher
* 2- New epoch is the same as current epoch, but new zxid is higher
* 3- New epoch is the same as current epoch, new zxid is the same
* as current zxid, but server id is higher.
*/
return ((newEpoch > curEpoch)
|| ((newEpoch == curEpoch)
&& ((newZxid > curZxid)
|| ((newZxid == curZxid)
&& (newId > curId)))));
当其他节点的纪元比自身高投它,如果纪元相同比较自身的zxid的大小,选举zxid大的节点,这里的zxid代表节点所提交事务最大的id,zxid越大代表该节点的数据越完整。
最后如果epoch和zxid都相等,则比较服务的serverId,这个Id是配置zookeeper集群所配置的,所以我们配置zookeeper集群的时候可以把服务性能更高的集群的serverId配置大些,让性能好的机器担任leader角色。
统计选票
如果已经确定有过半服务器认可了自己的投票(可能是更新后的投票),则终止投票。否则继续接收其它服务器的投票。
更新服务器状态
投票终止后,服务器开始更新自身状态。若过半的票投给了自己,则将自己的服务器状态更新为LEADING,否则将自己的状态更新为FOLLOWING。
集群启动领导选举
1、初始投票给自己
集群刚启动时,所有服务器的logicClock都为1,zxid都为0。各服务器初始化后,都投票给自己,并将自己的一票存入自己的票箱,如下图所示。
在上图中,(1, 1, 0)第一位数代表投出该选票的服务器的logicClock,第二位数代表被推荐的服务器的myid,第三位代表被推荐的服务器的最大的zxid。由于该步骤中所有选票都投给自己,所以第二位的myid即是自己的myid,第三位的zxid即是自己的zxid。
此时各自的票箱中只有自己投给自己的一票。
2、更新选票
服务器收到外部投票后,进行选票PK,相应更新自己的选票并广播出去,并将合适的选票存入自己的票箱,如下图所示。
服务器1收到服务器2的选票(1, 2, 0)和服务器3的选票(1, 3, 0)后,由于所有的logicClock都相等,所有的zxid都相等,因此根据myid判断应该将自己的选票按照服务器3的选票更新为(1, 3, 0),并将自己的票箱全部清空,再将服务器3的选票与自己的选票存入自己的票箱,接着将自己更新后的选票广播出去。此时服务器1票箱内的选票为(1, 3),(3, 3)。
同理,服务器2收到服务器3的选票后也将自己的选票更新为(1, 3, 0)并存入票箱然后广播。此时服务器2票箱内的选票为(2, 3),(3, ,3)。
服务器3根据上述规则,无须更新选票,自身的票箱内选票仍为(3, 3)。
服务器1与服务器2更新后的选票广播出去后,由于三个服务器最新选票都相同,最后三者的票箱内都包含三张投给服务器3的选票。
3、根据选票确定角色
根据上述选票,三个服务器一致认为此时服务器3应该是Leader。因此服务器1和2都进入FOLLOWING状态,而服务器3进入LEADING状态。之后Leader发起并维护与Follower间的心跳。
Follower重启选举
1、Follower重启投票给自己
Follower重启,或者发生网络分区后找不到Leader,会进入LOOKING状态并发起新的一轮投票。
2、发现已有Leader后成为Follower
服务器3收到服务器1的投票后,将自己的状态LEADING以及选票返回给服务器1。服务器2收到服务器1的投票后,将自己的状态FOLLOWING及选票返回给服务器1。此时服务器1知道服务器3是Leader,并且通过服务器2与服务器3的选票可以确定服务器3确实得到了超过半数的选票。因此服务器1进入FOLLOWING状态。
Leader重启选举
1、Follower发起新投票
Leader(服务器3)宕机后,Follower(服务器1和2)发现Leader不工作了,因此进入LOOKING状态并发起新的一轮投票,并且都将票投给自己。
2、广播更新选票
服务器1和2根据外部投票确定是否要更新自身的选票。这里有两种情况:
服务器1和2的zxid相同。例如在服务器3宕机前服务器1与2完全与之同步。此时选票的更新主要取决于myid的大小
服务器1和2的zxid不同。在旧Leader宕机之前,其所主导的写操作,只需过半服务器确认即可,而不需所有服务器确认。换句话说,服务器1和2可能一个与旧Leader同步(即zxid与之相同)另一个不同步(即zxid比之小)。此时选票的更新主要取决于谁的zxid较大
在上图中,服务器1的zxid为11,而服务器2的zxid为10,因此服务器2将自身选票更新为(3, 1, 11),如下图所示。
3、选出新Leader
经过上一步选票更新后,服务器1与服务器2均将选票投给服务器1,因此服务器2成为Follower,而服务器1成为新的Leader并维护与服务器2的心跳。
4、旧Leader恢复后发起选举
旧的Leader恢复后,进入LOOKING状态并发起新一轮领导选举,并将选票投给自己。此时服务器1会将自己的LEADING状态及选票(3, 1, 11)返回给服务器3,而服务器2将自己的FOLLOWING状态及选票(3, 1, 11)返回给服务器3。如下图所示。
5、旧Leader成为Follower
服务器3了解到Leader为服务器1,且根据选票了解到服务器1确实得到过半服务器的选票,因此自己进入FOLLOWING状态。
Commit过的数据不丢失
1、Failover前状态
为更好演示Leader Failover过程,本例中共使用5个ZooKeeper服务器。A作为Leader,共收到P1、P2、P3三条消息,并且Commit了1和2,且总体顺序为P1、P2、C1、P3、C2。根据顺序性原则,其它Follower收到的消息的顺序肯定与之相同。其中B与A完全同步,C收到P1、P2、C1,D收到P1、P2,E收到P1,如下图所示。
这里要注意:
由于A没有C3,意味着收到P3的服务器的总个数不会超过一半,也即包含A在内最多只有两台服务器收到P3。在这里A和B收到P3,其它服务器均未收到P3
由于A已写入C1、C2,说明它已经Commit了P1、P2,因此整个集群有超过一半的服务器,即最少三个服务器收到P1、P2。在这里所有服务器都收到了P1,除E外其它服务器也都收到了P2
2、选出新Leader
旧Leader也即A宕机后,其它服务器根据上述FastLeaderElection算法选出B作为新的Leader。C、D和E成为Follower且以B为Leader后,会主动将自己最大的zxid发送给B,B会将Follower的zxid与自身zxid间的所有被Commit过的消息同步给Follower,如下图所示。
在上图中:
P1和P2都被A Commit,因此B会通过同步保证P1、P2、C1与C2都存在于C、D和E中
P3由于未被A Commit,同时幸存的所有服务器中P3未存在于大多数据服务器中,因此它不会被同步到其它Follower
3、通知Follower可对外服务
同步完数据后,B会向D、C和E发送NEWLEADER命令并等待大多数服务器的ACK(下图中D和E已返回ACK,加上B自身,已经占集群的大多数),然后向所有服务器广播UPTODATE命令。收到该命令后的服务器即可对外提供服务。
未Commit过的消息对客户端不可见
在上例中,P3未被A Commit过,同时因为没有过半的服务器收到P3,因此B也未Commit P3(如果有过半服务器收到P3,即使A未Commit P3,B会主动Commit P3,即C3),所以它不会将P3广播出去。
具体做法是,B在成为Leader后,先判断自身未Commit的消息(本例中即P3)是否存在于大多数服务器中从而决定是否要将其Commit。然后B可得出自身所包含的被Commit过的消息中的最小zxid(记为min_zxid)与最大zxid(记为max_zxid)。C、D和E向B发送自身Commit过的最大消息zxid(记为max_zxid)以及未被Commit过的所有消息(记为zxid_set)。B根据这些信息作出如下操作:
如果Follower的max_zxid与Leader的max_zxid相等,说明该Follower与Leader完全同步,无须同步任何数据
如果Follower的max_zxid在Leader的(min_zxid,max_zxid)范围内,Leader会通过TRUNC命令通知Follower将其zxid_set中大于Follower的max_zxid(如果有)的所有消息全部删除
上述操作保证了未被Commit过的消息不会被Commit从而对外不可见。
上述例子中Follower上并不存在未被Commit的消息。但可考虑这种情况,如果将上述例子中的服务器数量从五增加到七,服务器F包含P1、P2、C1、P3,服务器G包含P1、P2。此时服务器F、A和B都包含P3,但是因为票数未过半,因此B作为Leader不会Commit P3,而会通过TRUNC命令通知F删除P3。如下图所示。
选举后的数据同步具体
那实际上Zookeeper在选举之后,Follower和Observer(统称为Learner)就会去向Leader注册,然后就会开始数据同步的过程。
数据同步包含3个主要值和4种形式。
PeerLastZxid:Learner服务器最后处理的ZXID
minCommittedLog:Leader提议缓存队列中最小ZXID
maxCommittedLog:Leader提议缓存队列中最大ZXID
直接差异化同步 DIFF同步
如果PeerLastZxid在minCommittedLog和maxCommittedLog之间,那么则说明Learner服务器还没有完全同步最新的数据。
1 首先Leader向Learner发送DIFF指令,代表开始差异化同步,然后把差异数据(从PeerLastZxid到maxCommittedLog之间的数据)提议proposal发送给Learner
2 发送完成之后发送一个NEWLEADER命令给Learner,同时Learner返回ACK表示已经完成了同步
3 接着等待集群中过半的Learner响应了ACK之后,就发送一个UPTODATE命令,Learner返回ACK,同步流程结束
先回滚再差异化同步 TRUNC+DIFF同步
这个设置针对的是一个异常的场景。
如果Leader刚生成一个proposal,还没有来得及发送出去,此时Leader宕机,重新选举之后作为Follower,但是新的Leader没有这个proposal数据。
举个栗子:
假设现在的Leader是A,minCommittedLog=1,maxCommittedLog=3,刚好生成的一个proposal的ZXID=4,然后挂了。
重新选举出来的Leader是B,B之后又处理了2个提议,然后minCommittedLog=1,maxCommittedLog=5。
这时候A的PeerLastZxid=4,在(1,5)之间。
那么这一条只存在于A的提议怎么处理?
A要进行事务回滚,相当于抛弃这条数据,并且回滚到最接近于PeerLastZxid的事务,对于A来说,也就是PeerLastZxid=3。
流程和DIFF一致,只是会先发送一个TRUNC命令,然后再执行差异化DIFF同步。
仅回滚同步 TRUNC同步
针对PeerLastZxid大于maxCommittedLog的场景,流程和上述一致,事务将会被回滚到maxCommittedLog的记录。
这个其实就更简单了,也就是你可以认为TRUNC+DIFF中的例子,新的Leader B没有处理提议,所以B中minCommittedLog=1,maxCommittedLog=3。
所以A的PeerLastZxid=4就会大于maxCommittedLog了,也就是A只需要回滚就行了,不需要执行差异化同步DIFF了。
全量同步 SNAP同步
适用于两个场景:
1 PeerLastZxid小于minCommittedLog
2 Leader服务器上没有提议缓存队列,并且PeerLastZxid不等于Leader的最大ZXID
这两种场景下,Leader将会发送SNAP命令,把全量的数据都发送给Learner进行同步。
状态流转
前面介绍了zookeeper服务状态有四种,ZAB状态也有四种。这里就简单介绍一个他们之间的状态流转,更能加深对zab协议在zookeeper工作流程中的作用。
1 服务在启动或者和leader失联之后服务状态转为LOOKING;
2 如果leader不存在选举leader,如果存在直接连接leader,此时zab协议状态为ELECTION;
3 如果有超过半数的投票选择同一台server,则leader选举结束,被选举为leader的server服务状态为LEADING,其他server服务状态为FOLLOWING/OBSERVING;
4 所有server连接上leader,此时zab协议状态为DISCOVERY;
5 leader同步数据给learner,使各个从节点数据和leader保持一致,此时zab协议状态为SYNCHRONIZATION;
6 同步超过一半的server之后,集群对外提供服务,此时zab状态为BROADCAST。
可以知道整个zookeeper服务的工作流程类似一个状态机的转换,而zab协议就是驱动服务状态流转的关键,理解了zab就理解了zookeeper工作的关键原理
崩溃恢复模式总结
说到崩溃恢复我们首先要提到** ZAB 中的 Leader 选举算法,当系统出现崩溃影响最大应该是 Leader 的崩溃**,因为我们只有一个 Leader ,所以当 Leader 出现问题的时候我们势必需要重新选举 Leader 。
Leader 选举可以分为两个不同的阶段,第一个是我们提到的 Leader 宕机需要重新选举,第二则是当 Zookeeper 启动时需要进行系统的 Leader 初始化选举。下面我先来介绍一下 ZAB 是如何进行初始化选举的。
假设我们集群中有3台机器,那也就意味着我们需要两台以上同意(超过半数)。比如这个时候我们启动了 server1 ,它会首先 投票给自己 ,投票内容为服务器的 myid 和 ZXID ,因为初始化所以 ZXID 都为0,此时 server1 发出的投票为 (1,0)。但此时 server1 的投票仅为1,所以不能作为 Leader ,此时还在选举阶段所以整个集群处于 Looking 状态。
接着 server2 启动了,它首先也会将投票选给自己(2,0),并将投票信息广播出去(server1也会,只是它那时没有其他的服务器了),server1 在收到 server2 的投票信息后会将投票信息与自己的作比较。首先它会比较 ZXID ,ZXID 大的优先为 Leader,如果相同则比较 myid,myid 大的优先作为 Leader。所以此时server1 发现 server2 更适合做 Leader,它就会将自己的投票信息更改为(2,0)然后再广播出去,之后server2 收到之后发现和自己的一样无需做更改,并且自己的 投票已经超过半数 ,则 确定 server2 为 Leader,server1 也会将自己服务器设置为 Following 变为 Follower。整个服务器就从 Looking 变为了正常状态。
当 server3 启动发现集群没有处于 Looking 状态时,它会直接以 Follower 的身份加入集群。
还是前面三个 server 的例子,如果在整个集群运行的过程中** server2 挂了,那么整个集群会如何重新选举 Leader 呢?其实和初始化选举差不多**。
首先毫无疑问的是剩下的两个 Follower 会将自己的状态 从 Following 变为 Looking 状态 ,然后每个 server 会向初始化投票一样首先给自己投票(这不过这里的 zxid 可能不是0了,这里为了方便随便取个数字)。
假设 server1 给自己投票为(1,99),然后广播给其他 server,server3 首先也会给自己投票(3,95),然后也广播给其他 server。server1 和 server3 此时会收到彼此的投票信息,和一开始选举一样,他们也会比较自己的投票和收到的投票(zxid 大的优先,如果相同那么就 myid 大的优先)。这个时候 server1 收到了 server3 的投票发现没自己的合适故不变,server3 收到 server1 的投票结果后发现比自己的合适于是更改投票为(1,99)然后广播出去,最后 server1 收到了发现自己的投票已经超过半数就把自己设为 Leader,server3 也随之变为 Follower。
请注意 ZooKeeper 为什么要设置奇数个结点?比如这里我们是三个,挂了一个我们还能正常工作,挂了两个我们就不能正常工作了(已经没有超过半数的节点数了,所以无法进行投票等操作了)。而假设我们现在有四个,挂了一个也能工作,但是挂了两个也不能正常工作了,这是和三个一样的,而三个比四个还少一个,带来的效益是一样的,所以 Zookeeper 推荐奇数个 server 。
那么说完了 ZAB 中的 Leader 选举方式之后我们再来了解一下** 崩溃恢复 是什么玩意?**
其实主要就是 当集群中有机器挂了,我们整个集群如何保证数据一致性?
如果只是 Follower 挂了,而且挂的没超过半数的时候,因为我们一开始讲了在 Leader 中会维护队列,所以不用担心后面的数据没接收到导致数据不一致性。
如果 Leader 挂了那就麻烦了,我们肯定需要先暂停服务变为 Looking 状态然后进行 Leader 的重新选举(上面我讲过了),但这个就要分为两种情况了,分别是 确保已经被Leader提交的提案最终能够被所有的Follower提交 和 跳过那些已经被丢弃的提案 。
确保已经被Leader提交的提案最终能够被所有的Follower提交是什么意思呢?
假设 Leader (server2) 发送 commit 请求(忘了请看上面的消息广播模式),他发送给了 server3,然后要发给 server1 的时候突然挂了。这个时候重新选举的时候我们如果把 server1 作为 Leader 的话,那么肯定会产生数据不一致性,因为 server3 肯定会提交刚刚 server2 发送的 commit 请求的提案,而 server1 根本没收到所以会丢弃。
那怎么解决呢?
聪明的同学肯定会质疑,**这个时候
server1
已经不可能成为
Leader
了,因为
server1
和
server3
进行投票选举的时候会比较
ZXID
,而此时
server3
的
ZXID
肯定比
server1
的大了**。(不理解可以看前面的选举算法)
那么跳过那些已经被丢弃的提案又是什么意思呢?
假设
Leader (server2)
此时同意了提案N1,自身提交了这个事务并且要发送给所有
Follower
要
commit
的请求,却在这个时候挂了,此时肯定要重新进行
Leader
的选举,比如说此时选
server1
为
Leader
(这无所谓)。但是过了一会,这个 **挂掉的
Leader
又重新恢复了** ,此时它肯定会作为
Follower
的身份进入集群中,需要注意的是刚刚
server2
已经同意提交了提案N1,但其他
server
并没有收到它的
commit
信息,所以其他
server
不可能再提交这个提案N1了,这样就会出现数据不一致性问题了,所以 该提案N1最终需要被抛弃掉 。
版权归原作者 xushiyu1996818 所有, 如有侵权,请联系我们删除。