0


SPARKSQL3.0-Spark兼容多版本Hive源码分析

一、前言

阅读本节需要先掌握Catalog基础知识

Spark对Hive的所有操作都是通过获取Hive元数据[metastore]帮助spark构建表信息从而调用HDFS-API对原始数据的操作,可以说Spark兼容多版本Hive就是在兼容Hive的Metastore

二、源码分析

在catalog一节中我们知道spark对hive操作是通过HiveExternalCatalog,而HiveExternalCatalog对hive的DDL、DML操作都是使用内部的HiveClient变量,如下:

image-20221103123338523

image-20221129113020675

接下来我们看HiveUtils.newClientForMetadata函数:

protected[hive]def newClientForMetadata(
      conf: SparkConf,
      hadoopConf: Configuration): HiveClient ={//将时间格式更改为统一的[[Long]]格式,不重要val configurations = formatTimeVarsForHiveClient(hadoopConf)//该函数将返回HiveClient
    newClientForMetadata(conf, hadoopConf, configurations)}

在newClientForMetadata函数中spark为我们提供了三种方式来构建HiveClient:

1、使用spark内置的hiveMetaStore相关包构建HiveClient

2、使用用户指定的hiveMetaStore相关包和version版本构建HiveClient

3、使用用户指定的hive版本去Maven仓库上下载hiveMetaStore相关包从而构建HiveClient

这里简化了部分源码,简化的部分后面会一一展开

protected[hive]def newClientForMetadata(
      conf: SparkConf,
      hadoopConf: Configuration,
      configurations: Map[String,String]): HiveClient ={val sqlConf =new SQLConf
    sqlConf.setConf(SQLContext.getSQLProperties(conf))// 获取hiveMetastore的版本,用户可以通过配置指定val hiveMetastoreVersion = HiveUtils.hiveMetastoreVersion(sqlConf)// 获取hiveMetastore的jar包路径,用户可以通过配置指定val hiveMetastoreJars = HiveUtils.hiveMetastoreJars(sqlConf)val hiveMetastoreSharedPrefixes = HiveUtils.hiveMetastoreSharedPrefixes(sqlConf)val hiveMetastoreBarrierPrefixes = HiveUtils.hiveMetastoreBarrierPrefixes(sqlConf)val metaVersion = IsolatedClientLoader.hiveVersion(hiveMetastoreVersion)val isolatedLoader =if(hiveMetastoreJars =="builtin"){// builtin代表使用spark内置的hiveMetaStore包// spark2.x内置使用hive-1.2.1版本,spark3.x内置使用的是hive-2.3.7......}elseif(hiveMetastoreJars =="maven"){// maven代表使用用户指定的hive版本去Maven仓库上下载hiveMetaStore相关包......}else{// 其他代表使用用户指定的hiveMetaStore相关包和version版本......}// 构建HiveClient
    isolatedLoader.createClient()}

先来看看hiveMetastoreVersion版本如何指定:

// 调用HiveUtils.hiveMetastoreVersion函数val hiveMetastoreVersion = HiveUtils.hiveMetastoreVersion(sqlConf)/**
   * The version of the hive client that will be used to communicate with the metastore.  Note that
   * this does not necessarily need to be the same version of Hive that is used internally by
   * Spark SQL for execution.
   */privatedef hiveMetastoreVersion(conf: SQLConf):String={
  conf.getConf(HIVE_METASTORE_VERSION)}// 这可以看到是通过--conf spark.sql.hive.metastore.version=xxx 指定版本,如果不指定则默认使用builtinHiveVersion变量,spark3.0中默认即2.3.7val HIVE_METASTORE_VERSION = buildStaticConf("spark.sql.hive.metastore.version").doc("Version of the Hive metastore. Available options are "+"<code>0.12.0</code> through <code>2.3.7</code> and "+"<code>3.0.0</code> through <code>3.1.2</code>.").version("1.4.0").stringConf
    .createWithDefault(builtinHiveVersion)/** The version of hive used internally by Spark SQL. */val builtinHiveVersion:String=if(isHive23) hiveVersion else"1.2.1"

image-20221129171235166

再看hiveMetaStore相关jar包地址如何指定:

// 调用HiveUtils.hiveMetastoreJars函数val hiveMetastoreJars = HiveUtils.hiveMetastoreJars(sqlConf)/**
   * The location of the jars that should be used to instantiate the HiveMetastoreClient.  This
   * property can be one of three options:
   *  - a classpath in the standard format for both hive and hadoop.
   *  - builtin - attempt to discover the jars that were used to load Spark SQL and use those. This
   *              option is only valid when using the execution version of Hive.
   *  - maven - download the correct version of hive on demand from maven.
   */privatedef hiveMetastoreJars(conf: SQLConf):String={
    conf.getConf(HIVE_METASTORE_JARS)}// 这可以看到是通过--conf spark.sql.hive.metastore.jars=xxx 指定jar包的classpath,如果不指定则默认返回builtin// 这里支持三种值:1、classpath; 2、默认builtin; 3、maven; 后面会详细展开val HIVE_METASTORE_JARS = buildStaticConf("spark.sql.hive.metastore.jars").doc(s"""
      | Location of the jars that should be used to instantiate the HiveMetastoreClient.
      | This property can be one of three options: "
      | 1. "builtin"
      |   Use Hive ${builtinHiveVersion}, which is bundled with the Spark assembly when
      |   <code>-Phive</code> is enabled. When this option is chosen,
      |   <code>spark.sql.hive.metastore.version</code> must be either
      |   <code>${builtinHiveVersion}</code> or not defined.
      | 2. "maven"
      |   Use Hive jars of specified version downloaded from Maven repositories.
      | 3. A classpath in the standard format for both Hive and Hadoop.
      """.stripMargin).version("1.4.0").stringConf
    .createWithDefault("builtin")

image-20221129171904844

接下来展开前面省略代码部分是如何构建HiveClient:

protected[hive]def newClientForMetadata(
      conf: SparkConf,
      hadoopConf: Configuration,
      configurations: Map[String,String]): HiveClient ={val sqlConf =new SQLConf
    sqlConf.setConf(SQLContext.getSQLProperties(conf))// 获取hiveMetastore的版本,用户可以指定val hiveMetastoreVersion = HiveUtils.hiveMetastoreVersion(sqlConf)// 获取hiveMetastore的jar包路径,用户可以指定val hiveMetastoreJars = HiveUtils.hiveMetastoreJars(sqlConf)val hiveMetastoreSharedPrefixes = HiveUtils.hiveMetastoreSharedPrefixes(sqlConf)val hiveMetastoreBarrierPrefixes = HiveUtils.hiveMetastoreBarrierPrefixes(sqlConf)val metaVersion = IsolatedClientLoader.hiveVersion(hiveMetastoreVersion)// 1.builtin模式使用内置hiveval isolatedLoader =if(hiveMetastoreJars =="builtin"){// 内置hive版本与用户指定的hiveMetastoreVersion版本不一致则报错if(builtinHiveVersion != hiveMetastoreVersion){thrownew IllegalArgumentException("Builtin jars can only be used when hive execution version == hive metastore version. "+s"Execution: $builtinHiveVersion != Metastore: $hiveMetastoreVersion. "+s"Specify a valid path to the correct hive jars using ${HIVE_METASTORE_JARS.key} "+s"or change ${HIVE_METASTORE_VERSION.key} to $builtinHiveVersion.")}// 函数:从传入的classLoader开始,递归查找类加载器链中的所有jars并返回def allJars(classLoader: ClassLoader): Array[URL]= classLoader match{casenull=> Array.empty[URL]case childFirst: ChildFirstURLClassLoader =>
          childFirst.getURLs()++ allJars(Utils.getSparkClassLoader)case urlClassLoader: URLClassLoader =>
          urlClassLoader.getURLs ++ allJars(urlClassLoader.getParent)case other => allJars(other.getParent)}// getContextClassLoader函数是通过Thread.currentThread().getContextClassLoader获取当前线程的classLoaderval classLoader = Utils.getContextOrSparkClassLoader
      
      val jars: Array[URL]=if(SystemUtils.isJavaVersionAtLeast(JavaVersion.JAVA_9)){// 这里是兼容java9版本,不做重点......}else{// 通过将当前classLoader传递给allJars函数,递归获取所有jar的urlval loadedJars = allJars(classLoader)// 校验,不重要if(loadedJars.length ==0){thrownew IllegalArgumentException("Unable to locate hive jars to connect to metastore. "+s"Please set ${HIVE_METASTORE_JARS.key}.")}
        loadedJars
      }

      logInfo(s"Initializing HiveMetastoreConnection version $hiveMetastoreVersion using Spark classes.")// 这里构建了一个IsolatedClientLoader,并将上面得到的loadedJars和version传递进去,后面会展开此类讲解new IsolatedClientLoader(
        version = metaVersion,
        sparkConf = conf,
        hadoopConf = hadoopConf,
        execJars = jars.toSeq,
        config = configurations,
        isolationOn =!isCliSessionState(),
        barrierPrefixes = hiveMetastoreBarrierPrefixes,
        sharedPrefixes = hiveMetastoreSharedPrefixes)}elseif(hiveMetastoreJars =="maven"){// 2.maven模式代表用户指定hive版本,将调用forVersion函数,下面会展开此函数讲解
      logInfo(s"Initializing HiveMetastoreConnection version $hiveMetastoreVersion using maven.")
      IsolatedClientLoader.forVersion(
        hiveMetastoreVersion = hiveMetastoreVersion,
        hadoopVersion = VersionInfo.getVersion,
        sparkConf = conf,
        hadoopConf = hadoopConf,
        config = configurations,
        barrierPrefixes = hiveMetastoreBarrierPrefixes,
        sharedPrefixes = hiveMetastoreSharedPrefixes)}else{// 3.这里说明是用户指定了hiveMetaStore的classpath路径,先将hiveMetaStoreJars路径分割后获取地址转化为url数组val jars =
        hiveMetastoreJars
          .split(File.pathSeparator).flatMap {case path ifnew File(path).getName =="*"=>val files =new File(path).getParentFile.listFiles()if(files ==null){
              logWarning(s"Hive jar path '$path' does not exist.")
              Nil
            }else{
              files.filter(_.getName.toLowerCase(Locale.ROOT).endsWith(".jar"))}case path =>new File(path):: Nil
        }.map(_.toURI.toURL)

      logInfo(s"Initializing HiveMetastoreConnection version $hiveMetastoreVersion "+s"using ${jars.mkString(":")}")// 这里构建了一个IsolatedClientLoader,并将jars和version传递进去,后面会展开此类讲解new IsolatedClientLoader(
        version = metaVersion,
        sparkConf = conf,
        hadoopConf = hadoopConf,
        execJars = jars.toSeq,
        config = configurations,
        isolationOn =true,
        barrierPrefixes = hiveMetastoreBarrierPrefixes,
        sharedPrefixes = hiveMetastoreSharedPrefixes)}// 通过三种不同方式构建成的isolatedLoader调用createClient创建hiveClient
    isolatedLoader.createClient()}

先来看一下maven模式下forVersion函数的逻辑:

def forVersion(
      hiveMetastoreVersion:String,
      hadoopVersion:String,
      sparkConf: SparkConf,
      hadoopConf: Configuration,
      config: Map[String,String]= Map.empty,
      ivyPath: Option[String]= None,
      sharedPrefixes: Seq[String]= Seq.empty,
      barrierPrefixes: Seq[String]= Seq.empty,
      sharesHadoopClasses:Boolean=true): IsolatedClientLoader = synchronized {// 通过用户传递的version版本转换成spark内部的hiveVersion静态类,下面有该函数实现val resolvedVersion = hiveVersion(hiveMetastoreVersion)var _sharesHadoopClasses = sharesHadoopClasses
    // 先从resolvedVersions-Map中判断是否有用户指定版本的jar包,第一次默认没有val files =if(resolvedVersions.contains((resolvedVersion, hadoopVersion))){
      resolvedVersions((resolvedVersion, hadoopVersion))}else{// 通过ADDITIONAL_REMOTE_REPOSITORIES获取maven远程仓库地址,下面有展开val remoteRepos = sparkConf.get(SQLConf.ADDITIONAL_REMOTE_REPOSITORIES)// 通过downloadVersion函数将用户指定的hiveMetastoreVersion版本相关包下载到本地并返回file的URL地址,downloadVersion函数下面有展开val(downloadedFiles, actualHadoopVersion)=try{(downloadVersion(resolvedVersion, hadoopVersion, ivyPath, remoteRepos), hadoopVersion)}catch{case e: RuntimeException if e.getMessage.contains("hadoop")=>// If the error message contains hadoop, it is probably because the hadoop// version cannot be resolved.val fallbackVersion ="2.7.4"
            logWarning(s"Failed to resolve Hadoop artifacts for the version $hadoopVersion. We "+s"will change the hadoop version from $hadoopVersion to $fallbackVersion and try "+"again. Hadoop classes will not be shared between Spark and Hive metastore client. "+"It is recommended to set jars used by Hive metastore client through "+"spark.sql.hive.metastore.jars in the production environment.")
            _sharesHadoopClasses =false(downloadVersion(
              resolvedVersion, fallbackVersion, ivyPath, remoteRepos), fallbackVersion)}// 将下载好的jar包地址存储至resolvedVersions-Map缓存
      resolvedVersions.put((resolvedVersion, actualHadoopVersion), downloadedFiles)
      resolvedVersions((resolvedVersion, actualHadoopVersion))}// 构建了一个IsolatedClientLoader,并将jars和version传递进去,后面会展开此类new IsolatedClientLoader(
      hiveVersion(hiveMetastoreVersion),
      sparkConf,
      execJars = files,
      hadoopConf = hadoopConf,
      config = config,
      sharesHadoopClasses = _sharesHadoopClasses,
      sharedPrefixes = sharedPrefixes,
      barrierPrefixes = barrierPrefixes)}// 将字符串版本转换成内置静态类def hiveVersion(version:String): HiveVersion = version match{case"12"|"0.12"|"0.12.0"=> hive.v12
    case"13"|"0.13"|"0.13.0"|"0.13.1"=> hive.v13
    case"14"|"0.14"|"0.14.0"=> hive.v14
    case"1.0"|"1.0.0"|"1.0.1"=> hive.v1_0
    case"1.1"|"1.1.0"|"1.1.1"=> hive.v1_1
    case"1.2"|"1.2.0"|"1.2.1"|"1.2.2"=> hive.v1_2
    case"2.0"|"2.0.0"|"2.0.1"=> hive.v2_0
    case"2.1"|"2.1.0"|"2.1.1"=> hive.v2_1
    case"2.2"|"2.2.0"=> hive.v2_2
    case"2.3"|"2.3.0"|"2.3.1"|"2.3.2"|"2.3.3"|"2.3.4"|"2.3.5"|"2.3.6"|"2.3.7"=>
      hive.v2_3
    case"3.0"|"3.0.0"=> hive.v3_0
    case"3.1"|"3.1.0"|"3.1.1"|"3.1.2"=> hive.v3_1
    case version =>thrownew UnsupportedOperationException(s"Unsupported Hive Metastore version ($version). "+s"Please set ${HiveUtils.HIVE_METASTORE_VERSION.key} with a valid version.")}// spark下载的maven包的远程仓库地址,用户可以指定地址,比如cdh的远程仓库地址val ADDITIONAL_REMOTE_REPOSITORIES =
    buildConf("spark.sql.maven.additionalRemoteRepositories").doc("A comma-delimited string config of the optional additional remote Maven mirror "+"repositories. This is only used for downloading Hive jars in IsolatedClientLoader "+"if the default Maven Central repo is unreachable.").version("3.0.0").stringConf
      .createWithDefault("https://maven-central.storage-download.googleapis.com/maven2/")// 该函数将会去maven仓库下载相关版本jar包存储在tmp目录下,并返回file的URL路径privatedef downloadVersion(
      version: HiveVersion,
      hadoopVersion:String,
      ivyPath: Option[String],
      remoteRepos:String): Seq[URL]={// 从这里可以发现spark下载hive相关包有哪些,这是因为hive-metaStore包中依赖了hive的其他包,如exec、common包等,故这里需要下载多个包// 从这里也可以看出如果我们要自己指定hive的jars,不仅仅要指定hive-metaStore.jar,还需要将相关包地址的指定。val hiveArtifacts = version.extraDeps ++
      Seq("hive-metastore","hive-exec","hive-common","hive-serde").map(a =>s"org.apache.hive:$a:${version.fullVersion}")++
      Seq("com.google.guava:guava:14.0.1",s"org.apache.hadoop:hadoop-client:$hadoopVersion")val classpath = quietly {
      SparkSubmitUtils.resolveMavenCoordinates(// 给定maven工件的jar的逗号分隔路径,包括它们的传递依赖项
        hiveArtifacts.mkString(","),
        SparkSubmitUtils.buildIvySettings(
          Some(remoteRepos),
          ivyPath),
        exclusions = version.exclusions)}val allFiles = classpath.split(",").map(new File(_)).toSet

    // 创建临时存放jar包的路径,默认是在/tmp路径下val tempDir = Utils.createTempDir(namePrefix =s"hive-${version}")
    allFiles.foreach(f => FileUtils.copyFileToDirectory(f, tempDir))
    logInfo(s"Downloaded metastore jars to ${tempDir.getCanonicalPath}")// 最终将下载好的jar包file转换成url数组返回
    tempDir.listFiles().map(_.toURI.toURL)}

image-20221129174831593

至此可以看出spark兼容hiveMetaStore所提供的三种模式都是先构建一个IsolatedClientLoader类,IsolatedClientLoader类是用来构造HiveClient背后具体的不同的Hive版本的工厂类,每一个IsolatedClientLoader对象,都封装了某个版本的HiveClient的实现,包括:版本号,对应版本的相关jars。

在IsolatedClientLoader类中有一个classLoader变量,该变量通过创建类加载器来实现不同hive版本的隔离!因为在一个JVM中一个类加载器不能存在两个一模一样的类,如果想实现此功能则需要创建新的classLoader,所以这里spark才会将jars路径传递进去;

关于classLoader相关知识不作为本节重点,感兴趣的小伙伴可以看这篇文章:老大难的 Java ClassLoader 再不理解就老了

接下来看一下IsolatedClientLoader的classLoader属性:

/**
   * The classloader that is used to load an isolated version of Hive.
   * This classloader is a special URLClassLoader that exposes the addURL method.
   * So, when we add jar, we can add this new jar directly through the addURL method
   * instead of stacking a new URLClassLoader on top of it.
   */private[hive]val classLoader: MutableURLClassLoader ={val isolatedClassLoader =// isolationOn变量意思是是否开启隔离,三种模式中只有buildin模式时该参数为false; maven和用户指定classpath时该值为true; 即需要隔离时才会自使用新的类加载器if(isolationOn){if(allJars.isEmpty){// See HiveUtils; this is the Java 9+ + builtin mode scenario
          baseClassLoader
        }else{// 获取父类加载器,默认null,不做重点val rootClassLoader: ClassLoader =......// 重点:构建一个URLClassLoader加载器,并将传递来的allJars地址传入new URLClassLoader(allJars, rootClassLoader){// 重写ClassLoader的loadClass函数overridedef loadClass(name:String, resolve:Boolean): Class[_]={// 判断当前这个classLoader对象是否已经加载了这个class对象,如果已经加载了,则直接返回val loaded = findLoadedClass(name)// 没加载调用doLoadClass函数if(loaded ==null) doLoadClass(name, resolve)else loaded
            }// 构建函数,核心是转化成bytes数组,不做重点def doLoadClass(name:String, resolve:Boolean): Class[_]={......}}}}else{
        baseClassLoader
      }// 最终将isolatedClassLoader作为父加载器从而构建出NonClosableMutableURLClassLoader加载器返回new NonClosableMutableURLClassLoader(isolatedClassLoader)}// NonClosableMutableURLClassLoader加载器继承MutableURLClassLoader
public class NonClosableMutableURLClassLoader extends MutableURLClassLoader {

  static {
    ClassLoader.registerAsParallelCapable();}

  public NonClosableMutableURLClassLoader(ClassLoader parent){super(new URL[]{}, parent);}@Override
  public void close(){}}// MutableURLClassLoader加载器继承子java的URLClassLoader
public class MutableURLClassLoader extends URLClassLoader {......}

可以看到spark通过提供自定义的独立的ClassLoader, 用来支持在同一个jvm 中同时使用多个不同版本的HiveMetastore,这是由于Spark本身默认绑定的built-in的hive 版本是1.2.1,因此,如果我们需要使用其他高版本的HiveClient,就有可能存在同一个Spark JVM里面并存多个不同版本的hive client,这需要使用不同的ClassLoader对象来实现, 每一个IsolatedClientLoader负责一个hive version.

接下来看一下IsolatedClientLoader的createClient函数:

private[hive]def createClient(): HiveClient = synchronized {val warehouseDir = Option(hadoopConf.get(ConfVars.METASTOREWAREHOUSE.varname))// 判断是否开启隔离,三种模式中只有buildin模式时该参数为false; maven和用户指定classpath时该值为trueif(!isolationOn){// 既然是默认模式,直接使用当前线程的上下文创建HiveClientImpl,该类后面会详细展开讲解returnnew HiveClientImpl(version, warehouseDir, sparkConf, hadoopConf, config,
        baseClassLoader,this)}// Pre-reflective instantiation setup.
    logDebug("Initializing the logger to avoid disaster...")// 保存当前线程的上下文val origLoader = Thread.currentThread().getContextClassLoader
      // 给当前线程设置应该隔离的classLoader上下文,实现隔离
    Thread.currentThread.setContextClassLoader(classLoader)try{// 从classLoader加载器中构建HiveClientImpl类,并将classLoader变量和自身[this]作为参数传递[后面有大用],HiveClientImpl类后面会展开
      classLoader
        .loadClass(classOf[HiveClientImpl].getName).getConstructors.head
        .newInstance(version, warehouseDir, sparkConf, hadoopConf, config, classLoader,this).asInstanceOf[HiveClient]}catch{case e: InvocationTargetException =>if(e.getCause().isInstanceOf[NoClassDefFoundError]){val cnf = e.getCause().asInstanceOf[NoClassDefFoundError]thrownew ClassNotFoundException(s"$cnf when creating Hive client using classpath: ${execJars.mkString(", ")}\n"+"Please make sure that jars for your version of hive and hadoop are included in the "+s"paths passed to ${HiveUtils.HIVE_METASTORE_JARS.key}.", e)}else{throw e
        }}finally{// 最终都会恢复当前线程之前的classLoader上下文
      Thread.currentThread.setContextClassLoader(origLoader)}}

接下来我们看一下HiveClientImpl类的实现,首先HiveClientImpl类是HiveClient的子类,HiveClient对外提供了诸多接口供spark使用

image-20221130152207456

HiveClientImpl有一个非常重要的变量shim寓意垫子,也是各个hive版本API兼容的关键,shim会根据version来创建不同hive版本的shim

image-20221130152353676

先来了解一下shim的继承关系:shim接口对外提供的接口是hive各个版本之间api冲突的接口,这里说的冲突是指api冲突,即hive不同版本中相同函数但定义不同的冲突,下面会详细讲解

**shim接口是从

Shim_v0_12

开始实现接口,所有子类以塔型结构继承,高版本hive遇到api冲突重新实现接口即可,不冲突的api也可以直接复用低版本的api**

image-20221130153737420

我们举一个hive-api冲突的例子,就拿loadPartition函数为例,在hive-0.12版本和hive-2.0版本该函数的参数个数不同

hive-0.12-loadPartition源码

publicvoidloadPartition(Path loadPath,String tableName,Map<String,String> partSpec,boolean replace,boolean holdDDLTime,boolean inheritTableSpecs,boolean isSkewedStoreAsSubdir)throwsHiveException{......}

hive-2.0-loadPartition源码

publicvoidloadPartition(Path loadPath,String tableName,Map<String,String> partSpec,boolean replace,boolean inheritTableSpecs,boolean isSkewedStoreAsSubdir,boolean isSrcLocal,boolean isAcid)throwsHiveException{// 2.0版本多了一个boolean类型的参数Table tbl =getTable(tableName);loadPartition(loadPath, tbl, partSpec, replace, inheritTableSpecs,
        isSkewedStoreAsSubdir, isSrcLocal, isAcid);}

可以看出在两个不同版本的hive中loadPartition函数定义发生变化,那么shim是如何兼容的呢?

首先在shim顶级接口中定义了loadPartition函数所需的核心参数,至于不同版本hive的loadPartition实现则是通过反射来实现!

Shim_v0_12:

// 0_12版本中率先实现了loadPartition函数,而执行的关键则是调用loadPartitionMethod,通过反射的方式调用overridedef loadPartition(
      hive: Hive,
      loadPath: Path,
      tableName:String,
      partSpec: JMap[String,String],
      replace:Boolean,
      inheritTableSpecs:Boolean,
      isSkewedStoreAsSubdir:Boolean,
      isSrcLocal:Boolean):Unit={
    loadPartitionMethod.invoke(hive, loadPath, tableName, partSpec, replace: JBoolean,
      JBoolean.FALSE, inheritTableSpecs: JBoolean, isSkewedStoreAsSubdir: JBoolean)}// 可以看到在0_12版本中是定义了loadPartition函数的Methodprivatelazyval loadPartitionMethod =
    findMethod(
      classOf[Hive],"loadPartition",
      classOf[Path],
      classOf[String],
      classOf[JMap[String,String]],
      JBoolean.TYPE,
      JBoolean.TYPE,
      JBoolean.TYPE,
      JBoolean.TYPE)

Shim_v2_0:

// 2_0版本中重写了loadPartition函数,因其调用的是自身的loadPartitionMethod,同样也是通过反射的方式调用overridedef loadPartition(
      hive: Hive,
      loadPath: Path,
      tableName:String,
      partSpec: JMap[String,String],
      replace:Boolean,
      inheritTableSpecs:Boolean,
      isSkewedStoreAsSubdir:Boolean,
      isSrcLocal:Boolean):Unit={
    loadPartitionMethod.invoke(hive, loadPath, tableName, partSpec, replace: JBoolean,
      inheritTableSpecs: JBoolean, isSkewedStoreAsSubdir: JBoolean,
      isSrcLocal: JBoolean, isAcid)}// 2_0版本的loadPartitionMethod,可以看到定义的loadPartitionMethod中多了一个参数,以此兼容hive2.0版本的loadPartition函数privatelazyval loadPartitionMethod =
    findMethod(
      classOf[Hive],"loadPartition",
      classOf[Path],
      classOf[String],
      classOf[JMap[String,String]],
      JBoolean.TYPE,
      JBoolean.TYPE,
      JBoolean.TYPE,
      JBoolean.TYPE,
      JBoolean.TYPE)

再看HiveClientImpl是怎么使用loadPartition函数:是调用了shim变量,而shim变量又会根据version创建不同版本的shim, 最终会调用不同版本shim中的loadPartition函数,进而调用loadPartitionMethod.invoke进行反射

image-20221130161024087

这里有一个隐藏知识点,既然是反射调用就需要在invoke时传递调用该函数的实体类,也就是上图中shim.loadPartition函数中第一个参数client,如下:

image-20221201142005374

将HiveClientImpl类中的client参数传递给shim的loadPartition函数,loadPartitionMethod.invoke随后反射调用

image-20221201141936596

看一下HiveClientImpl类中的client是什么:

image-20221130173727450

privatedef client: Hive ={// 第一次默认是nullif(clientLoader.cachedHive !=null){
      clientLoader.cachedHive.asInstanceOf[Hive]}else{// 这里通过调用的Hive类是org.apache.hadoop.hive.ql.metadata.Hiveval c = Hive.get(conf)// 保存进clientLoader中,供后续使用
      clientLoader.cachedHive = c
      c
    }}

那么这里就会产生一个疑惑,当外部spark程序第一次调用client函数时的类加载是谁?我们先回到HiveExternalCatalog构建HiveClient阶段:在这个阶段中已经构建好了spark所需要的hiveClient,并且当前线程的类加载器也恢复成最初的加载器[参考createClient函数最后的finally]

image-20221103123338523

假设spark正在运行用户程序的时候需要获取hive表的分区信息,此时spark-driver线程将调用HiveExternalCatalog的loadPartition函数

image-20221130163523307

再调用HiveClientImpl的loadPartition函数,注意,走到这一步的当前线程是不包含用户指定版本hive的classLoader!那么此时shim.loadPartition函数中的client【Hive】将会是spark内置hive-2.3.7版本的org.apache.hadoop.hive.ql.metadata.Hive;

image-20221130164139290

这个问题其实是通过withHiveState函数解决的:在该函数中会切换当前线程的classLoader,将IsolatedClientLoader中的classloader传入当前线程后再调用传入的f函数,假设此时的f函数是上面的shim.loadPartition(),那么当线程执行到loadPartition的client函数时所加载的org.apache.hadoop.hive.ql.metadata.Hive便是不同版本的Hive

def withHiveState[A](f:=> A): A = retryLocked {// 保留当前线程的classLoaderval original = Thread.currentThread().getContextClassLoader
    val originalConfLoader = state.getConf.getClassLoader
    
      // 设置当前现成的clientLoader,该参数是构建HiveClientImpl时传入的clientLoader【即IsolatedClientLoader】
    Thread.currentThread().setContextClassLoader(clientLoader.classLoader)
    state.getConf.setClassLoader(clientLoader.classLoader)// Set the thread local metastore client to the client associated with this HiveClientImpl.
    Hive.set(client)// Replace conf in the thread local Hive with current conf
    Hive.get(conf)// setCurrentSessionState will use the classLoader associated// with the HiveConf in `state` to override the context class loader of the current// thread.
    shim.setCurrentSessionState(state)val ret =try{
      f  //调用函数f}catch{case e: NoClassDefFoundError
        if HiveUtils.isHive23 && e.getMessage.contains("org/apache/hadoop/hive/serde2/SerDe")=>thrownew ClassNotFoundException("The SerDe interface removed since Hive 2.3(HIVE-15167)."+" Please migrate your custom SerDes to Hive 2.3 or build your own Spark with"+" hive-1.2 profile. See HIVE-15167 for more details.", e)}finally{// 最终将恢复线程classLoader
      state.getConf.setClassLoader(originalConfLoader)
      Thread.currentThread().setContextClassLoader(original)
      HiveCatalogMetrics.incrementHiveClientCalls(1)}
    ret
  }

HiveClientImpl中需要用到shim来解决冲突的函数都会使用withHiveState

image-20221130174530187

为了方便理解,这里看一下HiveClientImpl相关类图:img

至此spark兼容多版本Hive的源码就讲解完了,接下来说一下如何使用

三、使用

1、前提

当spark内置的hiveMetaStore相关包不足以支撑用户需求,此时需要使用另外两种模式来手动配置

spark2.x版本默认的hive是1.2.1版本

spark3.x版本默认的hive是2.3.7版本

一般来说hive的这两个版本向下兼容性较好,只不过不支持一些高版本hive-API

2、maven模式

适用场景

1、用户服务器上没有hiveMetaStore相关的classPath

2、用户自己配置的hiveMetaStore相关classPath不全、缺包、报错,因此想让spark自行下载【省事】

注意事项

1、该模式需要同时配置spark.sql.hive.metastore.jars 和 spark.sql.hive.metastore.version

2、如果是一些特殊hiveMetaStore包而maven远程仓库没有,则需要手动指定远程仓库,配置: --conf spark.sql.maven.additionalRemoteRepositories=xxxx

3、不要指定当前spark版本中还没有适配的hive,比如用户使用的是spark-2.4版本,此时shim中还没有适配hive_3.0的api,而用户设置hive版本却是hive-3.0;

使用
spark-submit xxxx --confspark.sql.hive.metastore.jars=maven --confspark.sql.hive.metastore.version=hive版本

3、用户模式

适用场景

1、该模式需要同时配置spark.sql.hive.metastore.jars 和 spark.sql.hive.metastore.version

2、用户服务器上有hiveMetaStore相关的classPath

注意事项

1、该模式需要同时配置spark.sql.hive.metastore.jars 和 spark.sql.hive.metastore.version

2、spark.sql.hive.metastore.jars指定的classpath 要和 spark.sql.hive.metastore.version版本对应上

3、不要指定当前spark版本中还没有适配的hive,比如用户使用的是spark-2.4版本,此时shim中还没有适配hive_3.0的api,而用户设置hive版本却是hive-3.0;

使用
spark-submit xxxx --confspark.sql.hive.metastore.jars=xxxx --confspark.sql.hive.metastore.version=hive版本

四、尾声

至此spark兼容多版本hive的源码就分析完了,Spark对Hive版本的兼容以及通过多ClassLoader加载不同版本hive的设计思想非常经典,建议大家边看源码边学习

标签: spark hive 大数据

本文转载自: https://blog.csdn.net/qq_35128600/article/details/128133364
版权归原作者 高世之智 所有, 如有侵权,请联系我们删除。

“SPARKSQL3.0-Spark兼容多版本Hive源码分析”的评论:

还没有评论