0


mysql的数据表同步工具 canal的使用

一 canal的扫盲

1.1 canal的介绍

canal是阿里巴巴旗下的一款开源项目,使用java语言进行开发,基于数据库增量日志解析,提供增量数据订阅与消费的功能。是一款很好用的数据库同步工具。目前只支持mysql。

二 canal的搭建

2.1 架构流程

2.2 配置服务器mysql

canal的原理是基于mysql binlog技术,所以,这里一定要开启mysql的binlog写入的功能。
1.开启mysql服务:service mysqld start 或 service mysql start
2.检测binlog功能是否开启,如果是off,则没有开启,如果是on表示开启
show variables like 'log_bin';

3.如果binlog的显示为off,则修改配置文件 my.cnf 进行配置开启

vi /etc/my.cnf

# set zhucongfuzhi
server_id = 86               # 设置服务器编号
log_bin = master-bin        # 启用二进制日志,并设置二进制日志文件前缀 
expire_logs_days=7          #自动清理 7 天前的log文件,可根据需要修改
binlog_format=ROW           #选择row模式

4.重启mysql数据库

切换到 mysql的 隶属用户:hd-mysql

[root@localhost local]# su hd-mysql
[hd-mysql@localhost etc]$ service mysql start
Starting MySQL. SUCCESS!

重启后,再查看binlog的值,为on,则表示已经开启了。

5.创建远程访问用户,并授权访问

进入mysql的命令模式:

create user 'canal'@'%'IDENTIFIED BY 'boc123'
grant all on *.* to 'canal'@'%'
flush privileges;

mysql> create user 'canal'@'%'IDENTIFIED BY 'boc123';
Query OK, 0 rows affected (0.01 sec)

mysql> grant all on . to 'canal'@'%';
Query OK, 0 rows affected (0.01 sec)

mysql> flush privileges;
Query OK, 0 rows affected (0.02 sec)

mysql>

2.3 配置安装canal同步工具

1.软件包下载地址

Releases · alibaba/canal · GitHub

2.上传软件包到服务器

3.解压并修改配置文件

将软件安装到:**/usr/local/ 目录下 ,完整路径为 /usr/local/canal 这个目录**

[root@localhost local]# mkdir -p canal
[root@localhost local]# cd canal/
[root@localhost canal]# ls
[root@localhost canal]# pwd
/usr/local/canal
[root@localhost canal]# tar -zxvf /root/export/servers/canal.deployer-1.1.6.tar.gz -C .
bin/startup.bat
bin/restart.sh
bin/startup.sh
bin/stop.sh
conf/metrics/
conf/example/
4.修改配置文件

vi conf/example/instance.properties

[root@localhost example]# pwd
/usr/local/canal/conf/example
[root@localhost example]# **vi instance.properties **
修改内容如下

mysql 数据解析关注的表,Perl正则表达式.
多个正则之间以逗号(,)分隔,转义符需要双斜杠(\)
常见例子:

  1. 所有表:.* or .\..
  2. canal schema下所有表: canal\..*
  3. canal下的以canal打头的表:canal\.canal.*
  4. canal schema(这里的canal是数据库的名字,test1 为表名)下的一张表:canal.test1
  5. 多个规则组合使用:canal\..*,mysql.test1,mysql.test2 (逗号分隔)
    注意:此过滤条件只针对row模式的数据有效(ps. mixed/statement因为不解析sql,所以无法准确提取tableName进行过滤)

3.进入bin目录下启动

1.进入到安装目录: /usr/local/canal

**2.启动命令: ** sh bin/startup.sh

[root@localhost canal]#** ./bin/startup.sh**
cd to /usr/local/canal/bin for workaround relative path
LOG CONFIGURATION : /usr/local/canal/bin/../conf/logback.xml
canal conf : /usr/local/canal/bin/../conf/canal.properties

截图如下

2.4 关闭防火墙

2.5 编写接收java程序

1.项目结构

2.pom文件

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <parent>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-parent</artifactId>
    <version>2.2.1.RELEASE</version>
    <relativePath/> <!-- lookup parent from repository -->
  </parent>
  <groupId>com.ljf</groupId>
  <artifactId>canal-demo</artifactId>
  <version>1.0-SNAPSHOT</version>

  <name>canal-demo</name>
  <!-- FIXME change it to the project's website -->
  <url>http://www.example.com</url>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
  </properties>

  <dependencies>
    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-web</artifactId>
    </dependency>

    <!--mysql-->
    <dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
    </dependency>

    <dependency>
      <groupId>commons-dbutils</groupId>
      <artifactId>commons-dbutils</artifactId>
      <version>1.7</version>
    </dependency>

    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-jdbc</artifactId>
    </dependency>

    <dependency>
      <groupId>com.alibaba.otter</groupId>
      <artifactId>canal.client</artifactId>
      <version>1.1.0</version>
    </dependency>
  </dependencies>

  <build>

  </build>
</project>

3.配置文件

# 服务端口
server.port=10010
# 服务名
spring.application.name=canal-client-t14

# 环境设置:dev、test、prod
spring.profiles.active=dev

# mysql数据库连接
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/xx_db?serverTimezone=GMT%2B8
spring.datasource.username=root
spring.datasource.password=cloudiip

4.处理类

package com.ljf.canal;

import com.alibaba.otter.canal.client.CanalConnector;
import com.alibaba.otter.canal.client.CanalConnectors;
import com.alibaba.otter.canal.protocol.CanalEntry.*;
import com.alibaba.otter.canal.protocol.Message;
import com.google.protobuf.InvalidProtocolBufferException;
import org.apache.commons.dbutils.DbUtils;
import org.apache.commons.dbutils.QueryRunner;
import org.springframework.stereotype.Component;

import javax.annotation.Resource;
import javax.sql.DataSource;
import java.net.InetSocketAddress;
import java.sql.Connection;
import java.sql.SQLException;
import java.util.Iterator;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.ConcurrentLinkedQueue;

@Component
public class CanalClient {

    //sql队列
    private Queue<String> SQL_QUEUE = new ConcurrentLinkedQueue<>();

    @Resource
    private DataSource dataSource;

    /**
     * canal入库方法
     */
    public void run() {

        CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress("192.168.152.141",
                11111), "example", "canal", "boc123");
        int batchSize = 1000;
        try {
            connector.connect();
            connector.subscribe(".*\\..*");
            connector.rollback();
            try {
                while (true) {
                    //尝试从master那边拉去数据batchSize条记录,有多少取多少
                    Message message = connector.getWithoutAck(batchSize);
                    long batchId = message.getId();
                    int size = message.getEntries().size();
                    if (batchId == -1 || size == 0) {
                        Thread.sleep(1000);
                    } else {
                        dataHandle(message.getEntries());
                    }
                    connector.ack(batchId);

                    //当队列里面堆积的sql大于一定数值的时候就模拟执行
                    if (SQL_QUEUE.size() >= 1) {
                        executeQueueSql();
                    }
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (InvalidProtocolBufferException e) {
                e.printStackTrace();
            }
        } finally {
            connector.disconnect();
        }
    }

    /**
     * 模拟执行队列里面的sql语句
     */
    public void executeQueueSql() {
        int size = SQL_QUEUE.size();
        for (int i = 0; i < size; i++) {
            String sql = SQL_QUEUE.poll();
            System.out.println("[sql]----> " + sql);

            this.execute(sql.toString());
        }
    }

    /**
     * 数据处理
     *
     * @param entrys
     */
    private void dataHandle(List<Entry> entrys) throws InvalidProtocolBufferException {
        for (Entry entry : entrys) {
            if (EntryType.ROWDATA == entry.getEntryType()) {
                RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
                EventType eventType = rowChange.getEventType();
                if (eventType == EventType.DELETE) {
                    saveDeleteSql(entry);
                } else if (eventType == EventType.UPDATE) {
                    saveUpdateSql(entry);
                } else if (eventType == EventType.INSERT) {
                    saveInsertSql(entry);
                }
            }
        }
    }

    /**
     * 保存更新语句
     *
     * @param entry
     */
    private void saveUpdateSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List<RowData> rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List<Column> newColumnList = rowData.getAfterColumnsList();
                StringBuffer sql = new StringBuffer("update " + entry.getHeader().getTableName() + " set ");
                for (int i = 0; i < newColumnList.size(); i++) {
                    sql.append(" " + newColumnList.get(i).getName()
                            + " = '" + newColumnList.get(i).getValue() + "'");
                    if (i != newColumnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(" where ");
                List<Column> oldColumnList = rowData.getBeforeColumnsList();
                for (Column column : oldColumnList) {
                    if (column.getIsKey()) {
                        //暂时只支持单一主键
                        sql.append(column.getName() + "=" + column.getValue());
                        break;
                    }
                }
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }

    /**
     * 保存删除语句
     *
     * @param entry
     */
    private void saveDeleteSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List<RowData> rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List<Column> columnList = rowData.getBeforeColumnsList();
                StringBuffer sql = new StringBuffer("delete from " + entry.getHeader().getTableName() + " where ");
                for (Column column : columnList) {
                    if (column.getIsKey()) {
                        //暂时只支持单一主键
                        sql.append(column.getName() + "=" + column.getValue());
                        break;
                    }
                }
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }

    /**
     * 保存插入语句
     *
     * @param entry
     */
    private void saveInsertSql(Entry entry) {
        try {
            RowChange rowChange = RowChange.parseFrom(entry.getStoreValue());
            List<RowData> rowDatasList = rowChange.getRowDatasList();
            for (RowData rowData : rowDatasList) {
                List<Column> columnList = rowData.getAfterColumnsList();
                StringBuffer sql = new StringBuffer("insert into " + entry.getHeader().getTableName() + " (");
                for (int i = 0; i < columnList.size(); i++) {
                    sql.append(columnList.get(i).getName());
                    if (i != columnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(") VALUES (");
                for (int i = 0; i < columnList.size(); i++) {
                    sql.append("'" + columnList.get(i).getValue() + "'");
                    if (i != columnList.size() - 1) {
                        sql.append(",");
                    }
                }
                sql.append(")");
                SQL_QUEUE.add(sql.toString());
            }
        } catch (InvalidProtocolBufferException e) {
            e.printStackTrace();
        }
    }

    /**
     * 入库
     * @param sql
     */
    public void execute(String sql) {
        Connection con = null;
        try {
            if(null == sql) return;
            con = dataSource.getConnection();
            QueryRunner qr = new QueryRunner();
            int row = qr.execute(con, sql);
            System.out.println("update: "+ row);
        } catch (SQLException e) {
            e.printStackTrace();
        } finally {
            DbUtils.closeQuietly(con);
        }
    }
}

5.启动类

package com.ljf;

import com.ljf.canal.CanalClient;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

import javax.annotation.Resource;

/**
 * Hello world!
 *
 */
@SpringBootApplication
public class  App implements CommandLineRunner
{
    @Resource
    private CanalClient canalClient;
    public static void main( String[] args )
    {
        System.out.println( "Hello World!" );
        SpringApplication.run(App.class, args);
    }

    @Override
    public void run(String... strings) throws Exception {
        //项目启动,执行canal客户端监听
        canalClient.run();
    }
}

6.启动服务

2.6 测试验证

1.在目的端的数据库,新建一个同样名字的数据库,同样名字的数据表。

如这里源数据库 xx_db, 数据表tb_student;

目的端:

2.在源表中新增数据

3.在目的库中查看

4.查看console

总结: 可以看到新增数据已经同步过来了!

源代码见: https://gitee.com/jurf-liu/canal-demo.git

标签: mysql 数据库

本文转载自: https://blog.csdn.net/u011066470/article/details/126734578
版权归原作者 健康平安的活着 所有, 如有侵权,请联系我们删除。

“mysql的数据表同步工具 canal的使用”的评论:

还没有评论