0


Spring Boot 集成 Kafka

Spring Boot 与 Kafka 集成是实现高效消息传递和数据流处理的常见方式。Spring Boot 提供了简化 Kafka 配置和使用的功能,使得集成过程变得更加直观和高效。以下是 Spring Boot 集成 Kafka 的详细步骤,包括配置、生产者和消费者的实现以及一些高级特性。

1. 添加依赖

首先,你需要在 Spring Boot 项目的

pom.xml

文件中添加 Kafka 相关的依赖。使用 Spring Boot 的起步依赖可以简化配置。

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-kafka</artifactId></dependency>

2. 配置 Kafka

2.1. 配置文件

application.properties

application.yml

文件中配置 Kafka 相关属性。

**

application.properties

**:

# Kafka 服务器地址
spring.kafka.bootstrap-servers=localhost:9092

# Kafka 消费者配置
spring.kafka.consumer.group-id=my-group
spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer

# Kafka 生产者配置
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer

**

application.yml

**:

spring:kafka:bootstrap-servers: localhost:9092consumer:group-id: my-group
      auto-offset-reset: earliest
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
    producer:key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer

2.2. Kafka 配置类

在 Spring Boot 中,你可以使用

@Configuration

注解创建一个配置类,来定义 Kafka 的生产者和消费者配置。

importorg.apache.kafka.clients.producer.ProducerConfig;importorg.apache.kafka.clients.consumer.ConsumerConfig;importorg.apache.kafka.common.serialization.StringDeserializer;importorg.apache.kafka.common.serialization.StringSerializer;importorg.springframework.context.annotation.Bean;importorg.springframework.context.annotation.Configuration;importorg.springframework.kafka.core.ConsumerFactory;importorg.springframework.kafka.core.KafkaTemplate;importorg.springframework.kafka.core.ProducerFactory;importorg.springframework.kafka.core.DefaultKafkaConsumerFactory;importorg.springframework.kafka.core.DefaultKafkaProducerFactory;importorg.springframework.kafka.core.KafkaTemplate;importorg.springframework.kafka.listener.ConcurrentMessageListenerContainer;importorg.springframework.kafka.listener.config.ContainerProperties;importorg.springframework.kafka.annotation.EnableKafka;importorg.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;importorg.springframework.kafka.core.ConsumerFactory;importorg.springframework.kafka.core.ProducerFactory;importorg.springframework.kafka.core.DefaultKafkaConsumerFactory;importorg.springframework.kafka.core.DefaultKafkaProducerFactory;importjava.util.HashMap;importjava.util.Map;@Configuration@EnableKafkapublicclassKafkaConfig{@BeanpublicProducerFactory<String,String>producerFactory(){Map<String,Object> configProps =newHashMap<>();
        configProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"localhost:9092");
        configProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class);
        configProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class);returnnewDefaultKafkaProducerFactory<>(configProps);}@BeanpublicKafkaTemplate<String,String>kafkaTemplate(){returnnewKafkaTemplate<>(producerFactory());}@BeanpublicConsumerFactory<String,String>consumerFactory(){Map<String,Object> configProps =newHashMap<>();
        configProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"localhost:9092");
        configProps.put(ConsumerConfig.GROUP_ID_CONFIG,"my-group");
        configProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class);
        configProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class);returnnewDefaultKafkaConsumerFactory<>(configProps);}@BeanpublicConcurrentKafkaListenerContainerFactory<String,String>kafkaListenerContainerFactory(){ConcurrentKafkaListenerContainerFactory<String,String> factory =newConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());return factory;}}

3. 实现 Kafka 生产者

3.1. 生产者服务

importorg.springframework.beans.factory.annotation.Autowired;importorg.springframework.kafka.core.KafkaTemplate;importorg.springframework.stereotype.Service;@ServicepublicclassKafkaProducerService{@AutowiredprivateKafkaTemplate<String,String> kafkaTemplate;privatestaticfinalStringTOPIC="my_topic";publicvoidsendMessage(String message){
        kafkaTemplate.send(TOPIC, message);}}

3.2. 控制器示例

importorg.springframework.beans.factory.annotation.Autowired;importorg.springframework.web.bind.annotation.PostMapping;importorg.springframework.web.bind.annotation.RequestBody;importorg.springframework.web.bind.annotation.RestController;@RestControllerpublicclassKafkaController{@AutowiredprivateKafkaProducerService kafkaProducerService;@PostMapping("/send")publicvoidsendMessage(@RequestBodyString message){
        kafkaProducerService.sendMessage(message);}}

4. 实现 Kafka 消费者

4.1. 消费者服务

importorg.springframework.kafka.annotation.KafkaListener;importorg.springframework.stereotype.Service;@ServicepublicclassKafkaConsumerService{@KafkaListener(topics ="my_topic", groupId ="my-group")publicvoidlisten(String message){System.out.println("Received message: "+ message);}}

5. 高级特性

5.1. 消息事务

Kafka 支持消息事务,确保消息的原子性。

生产者配置

spring.kafka.producer.enable-idempotence=true
spring.kafka.producer.transaction-id-prefix=my-transactional-id

使用事务

importorg.springframework.kafka.core.KafkaTemplate;importorg.springframework.kafka.core.ProducerFactory;importorg.springframework.kafka.core.TransactionTemplate;importorg.springframework.stereotype.Service;importorg.springframework.transaction.annotation.Transactional;@ServicepublicclassKafkaTransactionalService{privatefinalKafkaTemplate<String,String> kafkaTemplate;privatefinalTransactionTemplate transactionTemplate;publicKafkaTransactionalService(KafkaTemplate<String,String> kafkaTemplate,TransactionTemplate transactionTemplate){this.kafkaTemplate = kafkaTemplate;this.transactionTemplate = transactionTemplate;}@TransactionalpublicvoidsendMessageInTransaction(String message){
        kafkaTemplate.executeInTransaction(t ->{
            kafkaTemplate.send("my_topic", message);returntrue;});}}

5.2. 异步发送与回调

异步发送

publicvoidsendMessageAsync(String message){
    kafkaTemplate.send("my_topic", message).addCallback(
        result ->System.out.println("Sent message: "+ message),
        ex ->System.err.println("Failed to send message: "+ ex.getMessage()));}

总结

Spring Boot 与 Kafka 的集成使得消息队列的使用变得更加简单和高效。通过上述步骤,你可以轻松地配置 Kafka、实现生产者和消费者,并利用 Spring Boot 提供的强大功能来处理消息流。了解 Kafka 的高级特性(如事务和异步处理)能够帮助你更好地满足业务需求,确保系统的高可用性和数据一致性。

标签: spring boot kafka

本文转载自: https://blog.csdn.net/Casual_Lei/article/details/140701682
版权归原作者 傲雪凌霜,松柏长青 所有, 如有侵权,请联系我们删除。

“Spring Boot 集成 Kafka”的评论:

还没有评论