0


度学习pytorch实战六:ResNet50网络图像分类篇自建花数据集图像分类(5类)超详细代码

1.数据集简介、训练集与测试集划分
2.模型相关知识
3.model.py——定义ResNet50网络模型
4.train.py——加载数据集并训练,训练集计算损失值loss,测试集计算accuracy,保存训练好的网络参数
5.predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试

一、数据集简介

1.自建数据文件夹

首先确定这次分类种类,采用爬虫、官网数据集和自己拍照的照片获取5类,新建个文件夹data,里面包含5个文件夹,文件夹名字取种类英文,每个文件夹照片数量最好一样多,五百多张以上。如我选了雏菊,蒲公英,玫瑰,向日葵,郁金香5类,如下图,每种类型有600~900张图像。如下图

花数据集下载链接https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
在这里插入图片描述
2.划分训练集与测试集

这是划分数据集代码,同一目录下运,复制改文件夹路径。

import os
from shutil import copy
import random

defmkfile(file):ifnot os.path.exists(file):
        os.makedirs(file)# 获取 photos 文件夹下除 .txt 文件以外所有文件夹名(即3种分类的类名)
file_path ='data/flower_photos'
flower_class =[cla for cla in os.listdir(file_path)if".txt"notin cla]# 创建 训练集train 文件夹,并由3种类名在其目录下创建3个子目录
mkfile('flower_data/train')for cla in flower_class:
    mkfile('flower_data/train/'+ cla)# 创建 验证集val 文件夹,并由3种类名在其目录下创建3个子目录
mkfile('flower_data/val')for cla in flower_class:
    mkfile('flower_data/val/'+ cla)# 划分比例,训练集 : 验证集 = 9 : 1
split_rate =0.1# 遍历3种花的全部图像并按比例分成训练集和验证集for cla in flower_class:
    cla_path = file_path +'/'+ cla +'/'# 某一类别动作的子目录
    images = os.listdir(cla_path)# iamges 列表存储了该目录下所有图像的名称
    num =len(images)
    eval_index = random.sample(images, k=int(num * split_rate))# 从images列表中随机抽取 k 个图像名称for index, image inenumerate(images):# eval_index 中保存验证集val的图像名称if image in eval_index:
            image_path = cla_path + image
            new_path ='flower_data/val/'+ cla
            copy(image_path, new_path)# 将选中的图像复制到新路径# 其余的图像保存在训练集train中else:
            image_path = cla_path + image
            new_path ='flower_data/train/'+ cla
            copy(image_path, new_path)print("\r[{}] processing [{}/{}]".format(cla, index +1, num), end="")# processing barprint()print("processing done!")

二、模型相关知识

之前有文章介绍模型,如果不清楚可以点下链接转过去学习。

深度学习卷积神经网络CNN之ResNet模型网络详解说明(超详细理论篇)

在这里插入图片描述

三、model.py——定义ResNet50网络模型

import torch.nn as nn
import torch

classBasicBlock(nn.Module):
    expansion =1def__init__(self, in_channel, out_channel, stride=1, downsample=None,**kwargs):super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample

    defforward(self, x):
        identity = x
        if self.downsample isnotNone:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)return out

classBottleneck(nn.Module):"""
    注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
    但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
    这么做的好处是能够在top1上提升大概0.5%的准确率。
    可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
    """
    expansion =4def__init__(self, in_channel, out_channel, stride=1, downsample=None,
                 groups=1, width_per_group=64):super(Bottleneck, self).__init__()

        width =int(out_channel *(width_per_group /64.))* groups

        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
                               kernel_size=1, stride=1, bias=False)# squeeze channels
        self.bn1 = nn.BatchNorm2d(width)# -----------------------------------------
        self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)# -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,
                               kernel_size=1, stride=1, bias=False)# unsqueeze channels
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

    defforward(self, x):
        identity = x
        if self.downsample isnotNone:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)return out

classResNet(nn.Module):def__init__(self,
                 block,
                 blocks_num,
                 num_classes=1000,
                 include_top=True,
                 groups=1,
                 width_per_group=64):super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel =64

        self.groups = groups
        self.width_per_group = width_per_group

        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block,64, blocks_num[0])
        self.layer2 = self._make_layer(block,128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block,256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block,512, blocks_num[3], stride=2)if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1,1))# output size = (1, 1)
            self.fc = nn.Linear(512* block.expansion, num_classes)for m in self.modules():ifisinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')def_make_layer(self, block, channel, block_num, stride=1):
        downsample =Noneif stride !=1or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))

        layers =[]
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion

        for _ inrange(1, block_num):
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))return nn.Sequential(*layers)defforward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x,1)
            x = self.fc(x)return x

defresnet34(num_classes=1000, include_top=True):# https://download.pytorch.org/models/resnet34-333f7ec4.pthreturn ResNet(BasicBlock,[3,4,6,3], num_classes=num_classes, include_top=include_top)defresnet50(num_classes=1000, include_top=True):# https://download.pytorch.org/models/resnet50-19c8e357.pthreturn ResNet(Bottleneck,[3,4,6,3], num_classes=num_classes, include_top=include_top)defresnet101(num_classes=1000, include_top=True):# https://download.pytorch.org/models/resnet101-5d3b4d8f.pthreturn ResNet(Bottleneck,[3,4,23,3], num_classes=num_classes, include_top=include_top)defresnext50_32x4d(num_classes=1000, include_top=True):# https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
    groups =32
    width_per_group =4return ResNet(Bottleneck,[3,4,6,3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)defresnext101_32x8d(num_classes=1000, include_top=True):# https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth
    groups =32
    width_per_group =8return ResNet(Bottleneck,[3,4,23,3],
                  num_classes=num_classes,
                  include_top=include_top,
                  groups=groups,
                  width_per_group=width_per_group)

四、model.py——定义ResNet34网络模型

batch_size = 16
epochs = 5

import os
import sys
import json

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm
from model import resnet50

defmain():
    device = torch.device("cuda:0"if torch.cuda.is_available()else"cpu")print("using {} device.".format(device))

    data_transform ={"train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]),"val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])])}

    data_root = os.path.abspath(os.path.join(os.getcwd(),"../.."))# get data root path
    image_path = os.path.join(data_root,"zjdata","flower_data")# flower data set pathassert os.path.exists(image_path),"{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path,"train"),
                                         transform=data_transform["train"])
    train_num =len(train_dataset)# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict =dict((val, key)for key, val in flower_list.items())# write dict into json file
    json_str = json.dumps(cla_dict, indent=4)withopen('class_indices.json','w')as json_file:
        json_file.write(json_str)

    batch_size =16
    nw =min([os.cpu_count(), batch_size if batch_size >1else0,8])# number of workersprint('Using {} dataloader workers every process'.format(nw))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=0)

    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path,"val"),
                                            transform=data_transform["val"])
    val_num =len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))
    
    net = resnet50(num_classes=5, include_top=True)
    net.to(device)# define loss function
    loss_function = nn.CrossEntropyLoss()# construct an optimizer
    params =[p for p in net.parameters()if p.requires_grad]
    optimizer = optim.Adam(params, lr=0.1)

    epochs =5
    best_acc =0.0
    save_path ='./resNet50.pth'
    train_steps =len(train_loader)for epoch inrange(epochs):# train
        net.train()
        running_loss =0.0
        train_bar = tqdm(train_loader,file=sys.stdout)for step, data inenumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits = net(images.to(device))
            loss = loss_function(logits, labels.to(device))
            loss.backward()
            optimizer.step()# print statistics
            running_loss += loss.item()

            train_bar.desc ="train epoch[{}/{}] loss:{:.3f}".format(epoch +1,
                                                                     epochs,
                                                                     loss)# validate
        net.eval()
        acc =0.0# accumulate accurate number / epochwith torch.no_grad():
            val_bar = tqdm(validate_loader,file=sys.stdout)for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))# loss = loss_function(outputs, test_labels)
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

                val_bar.desc ="valid epoch[{}/{}]".format(epoch +1,
                                                           epochs)

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f'%(epoch +1, running_loss / train_steps, val_accurate))if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)print('Finished Training')if __name__ =='__main__':
    main()

训练中截图
在这里插入图片描述

五、predict.py——利用训练好的网络参数后,用自己找的图像进行分类测试

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import resnet34

defmain():
    device = torch.device("cuda:0"if torch.cuda.is_available()else"cpu")

    data_transform = transforms.Compose([transforms.Resize(256),
         transforms.CenterCrop(224),
         transforms.ToTensor(),
         transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])])# load image
    img_path ="./1.jpg"assert os.path.exists(img_path),"file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)# [N, C, H, W]
    img = data_transform(img)# expand batch dimension
    img = torch.unsqueeze(img, dim=0)# read class_indict
    json_path ='./class_indices.json'assert os.path.exists(json_path),"file: '{}' dose not exist.".format(json_path)withopen(json_path,"r")as f:
        class_indict = json.load(f)# create model
    model = resnet34(num_classes=5).to(device)# load model weights
    weights_path ="./resNet50.pth"assert os.path.exists(weights_path),"file: '{}' dose not exist.".format(weights_path)
    model.load_state_dict(torch.load(weights_path, map_location=device))# prediction
    model.eval()with torch.no_grad():# predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res ="class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)for i inrange(len(predict)):print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()if __name__ =='__main__':
    main()
标签: 学习 pytorch 网络

本文转载自: https://blog.csdn.net/qq_55433305/article/details/131176242
版权归原作者 Studying 开龙wu 所有, 如有侵权,请联系我们删除。

“度学习pytorch实战六:ResNet50网络图像分类篇自建花数据集图像分类(5类)超详细代码”的评论:

还没有评论