0


Hadoop-MapReduce-YarnChild启动篇

一、源码下载

下面是hadoop官方源码下载地址,我下载的是hadoop-3.2.4,那就一起来看下吧

Index of /dist/hadoop/core

二、上下文

在上一篇<Hadoop-MapReduce-MRAppMaster启动篇>中已经将到:MRAppMaster的启动,那么运行MapTask、ReduceTask的容器(YarnChild)是怎么启动的呢?接下来我们一起来看看

三、结论

MRJobConfig是一个MRJob的配置,里面包含了Map、Reduce、Combine类以及Job名称、用户名称、队列名称、MapTask数量、ReduceTask数量、工作目录,jar在本地的路径、任务超时时间、任务id、输入输出目录,每个任务的内存大小和cpu核数等等。

此外它里面还有一个属性,如下:

package org.apache.hadoop.mapreduce;
public interface MRJobConfig {
    //......省略......

    public static final String APPLICATION_MASTER_CLASS =
          "org.apache.hadoop.mapreduce.v2.app.MRAppMaster";

    public static final String MAPREDUCE_V2_CHILD_CLASS = 
          "org.apache.hadoop.mapred.YarnChild";
    //......省略......
}

MRAppMaster是MapReduce的ApplicationMaster实现,负责整个MapReduce作业的过程调度和状态协调

YarnChid是运行在每个容器中的进程,负责运行某一个MapTask或者ReduceTask,

有兴趣的同学可以看一个任务的Yarn日志,也可以看我的<Hadoop-MapReduce-跟着日志理解整体流程>一篇中的日志,就可以发现ApplicationMaster容器和MapTask、ReduceTask所在容器的的日志开头分别就是MRAppMaster和YarnChid

MRAppMaster的启动参数是在YARNRunner中配置的:

public class YARNRunner implements ClientProtocol {
    private List<String> setupAMCommand(Configuration jobConf) {
    List<String> vargs = new ArrayList<>(8);
    vargs.add(MRApps.crossPlatformifyMREnv(jobConf, Environment.JAVA_HOME)
        + "/bin/java");

    //......省略......

    vargs.add(MRJobConfig.APPLICATION_MASTER_CLASS);

    //......省略......

    return vargs;
  }
}

YarnChid的启动参数是在MapReduceChildJVM中配置的:

public class MapReduceChildJVM {
  public static List<String> getVMCommand(
      InetSocketAddress taskAttemptListenerAddr, Task task, 
      JVMId jvmID) {

    TaskAttemptID attemptID = task.getTaskID();
    JobConf conf = task.conf;

    Vector<String> vargs = new Vector<String>(8);

    vargs.add(MRApps.crossPlatformifyMREnv(task.conf, Environment.JAVA_HOME)
        + "/bin/java");

    //......省略......

    vargs.add(YarnChild.class.getName());  // main of Child
    
    //......省略......

    return vargsFinal;
  }
}

YarnChid启动后会启动MapTask或者ReduceTask

四、调用细节(源码跟读)

1、MRAppMaster

MRAppMaster是Map Reduce应用程序母版。状态机被封装在Job接口的实现中。所有状态更改都通过作业界面进行。每个事件都会导致作业中的有限状态转换。

MR AppMaster是松散耦合服务的组合。服务之间通过事件进行交互。这些组件类似于Actors模型。该组件对接收到的事件进行操作,并将事件发送到其他组件。

这使它保持高度并发性,而不需要同步或只需要最少的同步。

事件由中央调度机制进行调度。所有组件都注册到Dispatcher。

使用AppContext在不同组件之间共享信息。

我们先从MRAppMaster的main方法开始捋

public static void main(String[] args) {
    try {
      mainStarted = true;
      //设置默认异常处理
      Thread.setDefaultUncaughtExceptionHandler(new YarnUncaughtExceptionHandler());
      //获取容器相关信息:容器id、容器所在的NodeManager信息、应用提交时间
      String containerIdStr =
          System.getenv(Environment.CONTAINER_ID.name());
      String nodeHostString = System.getenv(Environment.NM_HOST.name());
      String nodePortString = System.getenv(Environment.NM_PORT.name());
      String nodeHttpPortString =
          System.getenv(Environment.NM_HTTP_PORT.name());
      String appSubmitTimeStr =
          System.getenv(ApplicationConstants.APP_SUBMIT_TIME_ENV);
      
      //校验容器相关信息
      validateInputParam(containerIdStr,
          Environment.CONTAINER_ID.name());
      validateInputParam(nodeHostString, Environment.NM_HOST.name());
      validateInputParam(nodePortString, Environment.NM_PORT.name());
      validateInputParam(nodeHttpPortString,
          Environment.NM_HTTP_PORT.name());
      validateInputParam(appSubmitTimeStr,
          ApplicationConstants.APP_SUBMIT_TIME_ENV);

      ContainerId containerId = ContainerId.fromString(containerIdStr);
      //根据containerId 获取ApplicationAttemptId 
      //ContainerId:表示集群中容器的全局唯一标识符
      //ApplicationAttemptId:表示ApplicationMaster对给定ApplicationId的特定尝试,由于ApplicationMaster的临时故障,如硬件故障、连接问题等,在计划应用程序的节点上,可能需要多次尝试才能运行应用程序。
      ApplicationAttemptId applicationAttemptId =
          containerId.getApplicationAttemptId();
      if (applicationAttemptId != null) {
        CallerContext.setCurrent(new CallerContext.Builder(
            "mr_appmaster_" + applicationAttemptId.toString()).build());
      }
      long appSubmitTime = Long.parseLong(appSubmitTimeStr);
      
      //构建MRAppMaster
      MRAppMaster appMaster =
          new MRAppMaster(applicationAttemptId, containerId, nodeHostString,
              Integer.parseInt(nodePortString),
              Integer.parseInt(nodeHttpPortString), appSubmitTime);
      //在JVM正常关闭期间接收到AND信号时运行的关闭挂钩。
      ShutdownHookManager.get().addShutdownHook(
        new MRAppMasterShutdownHook(appMaster), SHUTDOWN_HOOK_PRIORITY);
      //构建 map/reduce 作业配置
      JobConf conf = new JobConf(new YarnConfiguration());
      //添加配置资源(启动MRAppMaster 时配置过)
      conf.addResource(new Path(MRJobConfig.JOB_CONF_FILE));
      
      MRWebAppUtil.initialize(conf);
      //记录系统属性
      String systemPropsToLog = MRApps.getSystemPropertiesToLog(conf);
      if (systemPropsToLog != null) {
        LOG.info(systemPropsToLog);
      }

      String jobUserName = System
          .getenv(ApplicationConstants.Environment.USER.name());
      conf.set(MRJobConfig.USER_NAME, jobUserName);
      //初始化并启动该作业的AppMaster
      initAndStartAppMaster(appMaster, conf, jobUserName);
    } catch (Throwable t) {
      LOG.error("Error starting MRAppMaster", t);
      ExitUtil.terminate(1, t);
    }
  }

下面我们接着看initAndStartAppMaster()

protected static void initAndStartAppMaster(final MRAppMaster appMaster,
      final JobConf conf, String jobUserName) throws IOException,
      InterruptedException {
    //设置UGI的静态配置
    UserGroupInformation.setConfiguration(conf);
    // MAPREDUCE-6565: 需要设置SecurityUtil的配置。
    SecurityUtil.setConfiguration(conf);
    //安全框架已经将令牌加载到当前的UGI中,只需使用它们
    Credentials credentials =
        UserGroupInformation.getCurrentUser().getCredentials();
    LOG.info("Executing with tokens: {}", credentials.getAllTokens());
    
    //使用登录名创建用户。它旨在用于RPC中的远程用户,因为它没有任何凭据。
    UserGroupInformation appMasterUgi = UserGroupInformation
        .createRemoteUser(jobUserName);
    //将给定的凭据添加到此用户。
    appMasterUgi.addCredentials(credentials);

    //现在删除AM->RM令牌,这样任务就没有它了
    Iterator<Token<?>> iter = credentials.getAllTokens().iterator();
    while (iter.hasNext()) {
      Token<?> token = iter.next();
      if (token.getKind().equals(AMRMTokenIdentifier.KIND_NAME)) {
        iter.remove();
      }
    }
    //将所有凭据从一个凭据对象复制到另一个。现有的机密和令牌将被覆盖。
    conf.getCredentials().addAll(credentials);
    appMasterUgi.doAs(new PrivilegedExceptionAction<Object>() {
      @Override
      public Object run() throws Exception {
        //服务所需的所有初始化代码。
        //在特定服务实例的生命周期中,此方法只会被调用一次。
        //有兴趣的同学可以进去看看,我这里大致总结下它做了什么:
        //    1、创建作业类加载器
        //    2、获得作业所需的令牌,并将其放入UGI
        //    3、创建事件调度程序接口。它根据事件类型将事件分派给已注册的事件处理程序。
        //    4、将事件调度程序添加到管理的服务列表
        //    5、创建尝试任务完成监控(如果任务尝试在FINISHING状态下停留的时间过长,则此类会生成TA_TIMED_OUT。)
        //    6、将尝试任务完成监控添加到管理的服务列表
        //    7、根据尝试任务创建心的jobid
        //    8、判断是用新API还是旧API
        //    9、获取该作业输出格式的输出提交器。它负责确保正确提交输出。
        //    10、检查该作业在HDFS上的临时目录是否存在
        //    11、构建用于处理来自JobClient的请求的服务
        //    12、创建用于处理输出提交的服务并添加到管理的服务列表
        //    13、处理来自RM的抢占请求
        //    14、创建用于处理对TaskUmplicalProtocol的请求的服务并添加到管理的服务列表
        //    15、创建用于记录作业历史事件的服务,并注册到事件调度程序中
        //    16、创建该作业的事件调度服务并注册到事件调度程序中
        //    17、创建投机者组件事件调度服务并注册到事件调度程序中(任务尝试的状态更新将发送到此组件)并注册到事件调度程序
        //    18、启动临时目录清理程序
        //    19、构建从ResourceManager分配容器的服务(如果是uber模式,则是伪造容器)并注册到事件调度程序
        //    20、构建通过NodeManager启动分配容器的相应服务并注册到事件调度程序
        //    21、最后添加JobHistoryEventHandler并添加到管理的服务列表
        appMaster.init(conf);
        //启动该作业的AppMaster
        appMaster.start();
        if(appMaster.errorHappenedShutDown) {
          throw new IOException("Was asked to shut down.");
        }
        return null;
      }
    });
  }

下面我们接着看appMaster.start(),它最终还是会调用本类的serviceStart()

protected void serviceStart() throws Exception {

    amInfos = new LinkedList<AMInfo>();
    //因为作业有失败重试功能,假如这一次是重试作业旧需要覆盖上一次的Task并清理上一次的临时目录和输出
    completedTasksFromPreviousRun = new HashMap<TaskId, TaskInfo>();
    processRecovery();
    cleanUpPreviousJobOutput();

    //当前AM生成的当前AMInfo(里面有AppAttemptId、开始时间、所在容器id、所在NodeManager域名和端口)
    AMInfo amInfo =
        MRBuilderUtils.newAMInfo(appAttemptID, startTime, containerID, nmHost,
            nmPort, nmHttpPort);

    //创建并初始化(但不启动)单例job。
    //并将job完成事件和处理程序注册到事件调度程序中
    job = createJob(getConfig(), forcedState, shutDownMessage);

    //为所有以前的AM发送一个MR AM启动的事件。
    for (AMInfo info : amInfos) {
      dispatcher.getEventHandler().handle(
          new JobHistoryEvent(job.getID(), new AMStartedEvent(info
              .getAppAttemptId(), info.getStartTime(), info.getContainerId(),
              info.getNodeManagerHost(), info.getNodeManagerPort(), info
                  .getNodeManagerHttpPort(), appSubmitTime)));
    }

    //为此AM发送一个MR AM启动的事件。
    dispatcher.getEventHandler().handle(
        new JobHistoryEvent(job.getID(), new AMStartedEvent(amInfo
            .getAppAttemptId(), amInfo.getStartTime(), amInfo.getContainerId(),
            amInfo.getNodeManagerHost(), amInfo.getNodeManagerPort(), amInfo
                .getNodeManagerHttpPort(), this.forcedState == null ? null
                    : this.forcedState.toString(), appSubmitTime)));
    amInfos.add(amInfo);

    //metrics system(度量系统)初始化并启动
    DefaultMetricsSystem.initialize("MRAppMaster");

    boolean initFailed = false;
    if (!errorHappenedShutDown) {
      // create a job event for job initialization
      JobEvent initJobEvent = new JobEvent(job.getID(), JobEventType.JOB_INIT);
      // Send init to the job (this does NOT trigger job execution)
      // This is a synchronous call, not an event through dispatcher. We want
      // job-init to be done completely here.
      jobEventDispatcher.handle(initJobEvent);

      // If job is still not initialized, an error happened during
      // initialization. Must complete starting all of the services so failure
      // events can be processed.
      initFailed = (((JobImpl)job).getInternalState() != JobStateInternal.INITED);

      // JobImpl's InitTransition is done (call above is synchronous), so the
      // "uber-decision" (MR-1220) has been made.  Query job and switch to
      // ubermode if appropriate (by registering different container-allocator
      // and container-launcher services/event-handlers).

      if (job.isUber()) {
        speculatorEventDispatcher.disableSpeculation();
        LOG.info("MRAppMaster uberizing job " + job.getID()
            + " in local container (\"uber-AM\") on node "
            + nmHost + ":" + nmPort + ".");
      } else {
        // send init to speculator only for non-uber jobs. 
        // This won't yet start as dispatcher isn't started yet.
        dispatcher.getEventHandler().handle(
            new SpeculatorEvent(job.getID(), clock.getTime()));
        LOG.info("MRAppMaster launching normal, non-uberized, multi-container "
            + "job " + job.getID() + ".");
      }
      // Start ClientService here, since it's not initialized if
      // errorHappenedShutDown is true
      clientService.start();
    }
    //启动所有组件
    super.serviceStart();

    //最终设置作业类加载器
    MRApps.setClassLoader(jobClassLoader, getConfig());

    if (initFailed) {
      JobEvent initFailedEvent = new JobEvent(job.getID(), JobEventType.JOB_INIT_FAILED);
      jobEventDispatcher.handle(initFailedEvent);
    } else {
      //所有组件都已启动后,启动作业
      startJobs();
    }
  }

下面我们接着看startJobs(),可以覆盖此项以实例化多个作业并创建工作流

protected void startJobs() {
    /** 创建一个作业启动事件(JobEventType.JOB_START)来启动 */
    JobEvent startJobEvent = new JobStartEvent(job.getID(),
        recoveredJobStartTime);
    /** 发送作业启动事件。这将触发作业执行 */
    dispatcher.getEventHandler().handle(startJobEvent);
  }

下面我们看下JobEventType.JOB_START事件的处理,作业启动事件和处理程序在JobImpl中。

2、JobImpl

JobImpl是作业界面的实施。维护作业的状态机。读和写调用使用ReadWriteLock实现并发。

关于作业的状态有NEW、INITED、SETUP、RUNNING、KILL_WAIT、COMMITTING、SUCCEEDED、FAIL_WAIT、FAIL_ABORT、KILL_ABORT、FAILED、KILLED、INTERNAL_ERROR、AM_REBOOT等,有兴趣的同学可以跟读下每个状态的转换细节,这里不一一跟读了,

protected static final
    StateMachineFactory<JobImpl, JobStateInternal, JobEventType, JobEvent> 
       stateMachineFactory
     = new StateMachineFactory<JobImpl, JobStateInternal, JobEventType, JobEvent>
              (JobStateInternal.NEW)

          // Transitions from NEW state
          

          // Transitions from INITED state
          .addTransition(JobStateInternal.INITED, JobStateInternal.SETUP,
              JobEventType.JOB_START,
              new StartTransition())

          // Transitions from SETUP state
          .addTransition(JobStateInternal.SETUP, JobStateInternal.RUNNING,
              JobEventType.JOB_SETUP_COMPLETED,
              new SetupCompletedTransition())

          // Transitions from RUNNING state
          

          // Transitions from KILL_WAIT state.
          

          // Transitions from COMMITTING state
          

          // Transitions from SUCCEEDED state
          

          // Transitions from FAIL_WAIT state
         

          //Transitions from FAIL_ABORT state
         

          // Transitions from KILL_ABORT state
          

          // Transitions from FAILED state
          

          // Transitions from KILLED state
          

          // No transitions from INTERNAL_ERROR state. Ignore all.
          

          // No transitions from AM_REBOOT state. Ignore all.
          

          // create the topology tables
          .installTopology();

以下是JobEventType.JOB_START事件的处理程序

public static class StartTransition
  implements SingleArcTransition<JobImpl, JobEvent> {
    /**
     * 这个转换在事件调度器线程中执行,尽管它是在MRAppMaster的startJobs()方法中触发的。
     */
    @Override
    public void transition(JobImpl job, JobEvent event) {
      JobStartEvent jse = (JobStartEvent) event;
      if (jse.getRecoveredJobStartTime() != -1L) {
        job.startTime = jse.getRecoveredJobStartTime();
      } else {
        job.startTime = job.clock.getTime();
      }
      JobInitedEvent jie =
        new JobInitedEvent(job.oldJobId,
             job.startTime,
             job.numMapTasks, job.numReduceTasks,
             job.getState().toString(),
             job.isUber());
      job.eventHandler.handle(new JobHistoryEvent(job.jobId, jie));
      JobInfoChangeEvent jice = new JobInfoChangeEvent(job.oldJobId,
          job.appSubmitTime, job.startTime);
      job.eventHandler.handle(new JobHistoryEvent(job.jobId, jice));
      job.metrics.runningJob(job);
      
      //CommitterEventType.JOB_SETUP事件处理
      job.eventHandler.handle(new CommitterJobSetupEvent(
              job.jobId, job.jobContext));
    }
  }

JOB_SETUP事件是由CommitterEventHandler处理

3、CommitterEventHandler

CommitterEventHandler负责处理JOB_SETUP、JOB_COMMIT、JOB_ABORT、TASK_ABORT事件

public class CommitterEventHandler extends AbstractService
    implements EventHandler<CommitterEvent> {
    
    public void run() {
      LOG.info("Processing the event " + event.toString());
      switch (event.getType()) {
      case JOB_SETUP:
        handleJobSetup((CommitterJobSetupEvent) event);
        break;
      case JOB_COMMIT:
        handleJobCommit((CommitterJobCommitEvent) event);
        break;
      case JOB_ABORT:
        handleJobAbort((CommitterJobAbortEvent) event);
        break;
      case TASK_ABORT:
        handleTaskAbort((CommitterTaskAbortEvent) event);
        break;
      default:
        throw new YarnRuntimeException("Unexpected committer event "
            + event.toString());
      }

    }

    //处理JOB_SETUP事件
    protected void handleJobSetup(CommitterJobSetupEvent event) {
      try {
        committer.setupJob(event.getJobContext());
        //现在job的状态为JobEventType.JOB_SETUP_COMPLETED
        context.getEventHandler().handle(
            new JobSetupCompletedEvent(event.getJobID()));
      } catch (Exception e) {
        LOG.warn("Job setup failed", e);
        context.getEventHandler().handle(new JobSetupFailedEvent(
            event.getJobID(), StringUtils.stringifyException(e)));
      }
    }

}

4、再回JobImpl

JobEventType.JOB_SETUP_COMPLETED的处理程序为SetupCompletedTransition(),在第2步中有。

private static class SetupCompletedTransition
      implements SingleArcTransition<JobImpl, JobEvent> {
    @Override
    public void transition(JobImpl job, JobEvent event) {
      job.setupProgress = 1.0f;
      //调度MapTask
      job.scheduleTasks(job.mapTasks, job.numReduceTasks == 0);
      //调度ReduceTask
      job.scheduleTasks(job.reduceTasks, true);

      //如果没有任务,只需过渡到已完成的工作状态
      if (job.numReduceTasks == 0 && job.numMapTasks == 0) {
        job.eventHandler.handle(new JobEvent(job.jobId,
            JobEventType.JOB_COMPLETED));
      }
    }
  }

  protected void scheduleTasks(Set<TaskId> taskIDs,
      boolean recoverTaskOutput) {
    for (TaskId taskID : taskIDs) {
      TaskInfo taskInfo = completedTasksFromPreviousRun.remove(taskID);
      if (taskInfo != null) {
        //如果是重试任务需要覆盖
        eventHandler.handle(new TaskRecoverEvent(taskID, taskInfo,
            committer, recoverTaskOutput));
      } else {
        //新任务,需要做任务调度处理,我们看这块的逻辑
        eventHandler.handle(new TaskEvent(taskID, TaskEventType.T_SCHEDULE));
      }
    }
  }

5、TaskImpl

TaskImpl是任务接口的实现,维护任务的状态机。任务的状态有NEW、SCHEDULED、RUNNING、KILL_WAIT、SUCCEEDED、FAILED

private static final StateMachineFactory
               <TaskImpl, TaskStateInternal, TaskEventType, TaskEvent> 
            stateMachineFactory 
           = new StateMachineFactory<TaskImpl, TaskStateInternal, TaskEventType, TaskEvent>
               (TaskStateInternal.NEW)

    // 定义Task的状态机

    // Transitions from NEW state
    .addTransition(TaskStateInternal.NEW, TaskStateInternal.SCHEDULED, 
        TaskEventType.T_SCHEDULE, new InitialScheduleTransition())

    // Transitions from SCHEDULED state
      //启动第一次尝试时,任务状态设置为RUNNING

 
    // Transitions from RUNNING state
    

    // Transitions from KILL_WAIT state
    

    // Transitions from SUCCEEDED state
   

    // Transitions from FAILED state        

    // create the topology tables
    .installTopology();

可以看到处理事件调用的是InitialScheduleTransition()

private static class InitialScheduleTransition
  implements SingleArcTransition<TaskImpl, TaskEvent> {

  @Override
  public void transition(TaskImpl task, TaskEvent event) {
    task.addAndScheduleAttempt(Avataar.VIRGIN);
    task.scheduledTime = task.clock.getTime();
    task.sendTaskStartedEvent();
  }
}

private void addAndScheduleAttempt(Avataar avataar, boolean reschedule) {
    TaskAttempt attempt = addAttempt(avataar);
    inProgressAttempts.add(attempt.getID());
    //schedule the nextAttemptNumber
    if (failedAttempts.size() > 0 || reschedule) {
      eventHandler.handle(new TaskAttemptEvent(attempt.getID(),
          TaskAttemptEventType.TA_RESCHEDULE));
    } else {
      //将任务状态变成TaskAttemptEventType.TA_SCHEDULE)
      eventHandler.handle(new TaskAttemptEvent(attempt.getID(),
          TaskAttemptEventType.TA_SCHEDULE));
    }
  }

private void sendTaskStartedEvent() {
    launchTime = getLaunchTime();
    //创建事件以记录任务的开始
    TaskStartedEvent tse = new TaskStartedEvent(
        TypeConverter.fromYarn(taskId), launchTime,
        TypeConverter.fromYarn(taskId.getTaskType()),
        getSplitsAsString());
    eventHandler
        .handle(new JobHistoryEvent(taskId.getJobId(), tse));
    historyTaskStartGenerated = true;
  }

  public static org.apache.hadoop.mapreduce.TaskType fromYarn(
      TaskType taskType) {
    switch (taskType) {
    case MAP:
      return org.apache.hadoop.mapreduce.TaskType.MAP;
    case REDUCE:
      return org.apache.hadoop.mapreduce.TaskType.REDUCE;
    default:
      throw new YarnRuntimeException("Unrecognized task type: " + taskType);
    }
  }

6、TaskAttemptImpl

TaskAttemptImpl是尝试任务的实现,因为有失败重试机制,因此每一次在容器中运行的任务都先称为尝试任务,当尝试任务运行成功后,对应的任务也会标记为成功。

TaskAttemptImpl维护尝试任务的状态机。任务的状态有NEW、UNASSIGNED、ASSIGNED、RUNNING、SUCCESS_FINISHING_CONTAINER、FAIL_FINISHING_CONTAINER、COMMIT_PENDING、SUCCESS_CONTAINER_CLEANUP、FAIL_CONTAINER_CLEANUP、KILL_CONTAINER_CLEANUP、FAIL_TASK_CLEANUP、KILL_TASK_CLEANUP、SUCCEEDED、FAILED、KILLED

private static final StateMachineFactory
        <TaskAttemptImpl, TaskAttemptStateInternal, TaskAttemptEventType, TaskAttemptEvent>
        stateMachineFactory
    = new StateMachineFactory
             <TaskAttemptImpl, TaskAttemptStateInternal, TaskAttemptEventType, TaskAttemptEvent>
           (TaskAttemptStateInternal.NEW)

     // Transitions from the NEW state.
     .addTransition(TaskAttemptStateInternal.NEW, TaskAttemptStateInternal.UNASSIGNED,
         TaskAttemptEventType.TA_SCHEDULE, new RequestContainerTransition(false))
   

     // Transitions from the UNASSIGNED state.
     .addTransition(TaskAttemptStateInternal.UNASSIGNED,
         TaskAttemptStateInternal.ASSIGNED, TaskAttemptEventType.TA_ASSIGNED,
         new ContainerAssignedTransition())
    

     // Transitions from the ASSIGNED state.
   

     // Transitions from RUNNING state.
     

     // Transitions from SUCCESS_FINISHING_CONTAINER state
    

     // Transitions from COMMIT_PENDING state
     

      // Transitions from SUCCESS_CONTAINER_CLEANUP state
      // kill and cleanup the container
      

     // Transitions from FAIL_CONTAINER_CLEANUP state.
     

      // Transitions from KILL_CONTAINER_CLEANUP
     

     // Transitions from FAIL_TASK_CLEANUP
     // run the task cleanup
    

     // Transitions from KILL_TASK_CLEANUP
    

      // Transitions from SUCCEEDED
     

     // Transitions from FAILED state

     // Transitions from KILLED state

     // create the topology tables
     .installTopology();

可以看到处理TaskAttemptEventType.TA_SCHEDULE事件的逻辑是RequestContainerTransition()

 static class RequestContainerTransition implements
      SingleArcTransition<TaskAttemptImpl, TaskAttemptEvent> {
    private final boolean rescheduled;
    public RequestContainerTransition(boolean rescheduled) {
      this.rescheduled = rescheduled;
    }
    @SuppressWarnings("unchecked")
    @Override
    public void transition(TaskAttemptImpl taskAttempt, 
        TaskAttemptEvent event) {
      //告诉任何投机者我们正在请求一个容器
      taskAttempt.eventHandler.handle
          (new SpeculatorEvent(taskAttempt.getID().getTaskId(), +1));
      //申请容器
      if (rescheduled) {
        taskAttempt.eventHandler.handle(
            ContainerRequestEvent.createContainerRequestEventForFailedContainer(
                taskAttempt.attemptId, 
                taskAttempt.resourceCapability));
      } else {
        //处理ContainerAllocator.EventType.CONTAINER_REQ事件
        taskAttempt.eventHandler.handle(new ContainerRequestEvent(
            taskAttempt.attemptId, taskAttempt.resourceCapability,
            taskAttempt.dataLocalHosts.toArray(
                new String[taskAttempt.dataLocalHosts.size()]),
            taskAttempt.dataLocalRacks.toArray(
                new String[taskAttempt.dataLocalRacks.size()])));
      }
    }
  }

7、LocalContainerAllocator

LocalContainerAllocator负责在本地分配容器。不分配真正的容器;而是为所有请求发送一个已分配的事件。也处理ContainerAllocator.EventType.CONTAINER_REQ事件

public void handle(ContainerAllocatorEvent event) {
    if (event.getType() == ContainerAllocator.EventType.CONTAINER_REQ) {
      LOG.info("Processing the event " + event.toString());
      //分配与AM相同的容器ID
      ContainerId cID =
          ContainerId.newContainerId(getContext().getApplicationAttemptId(),
            this.containerId.getContainerId());
      Container container = recordFactory.newRecordInstance(Container.class);
      container.setId(cID);
      NodeId nodeId = NodeId.newInstance(this.nmHost, this.nmPort);
      container.setResource(Resource.newInstance(0, 0));
      container.setNodeId(nodeId);
      container.setContainerToken(null);
      container.setNodeHttpAddress(this.nmHost + ":" + this.nmHttpPort);
      //将容器分配的事件发送到任务尝试

      if (event.getAttemptID().getTaskId().getTaskType() == TaskType.MAP) {
        JobCounterUpdateEvent jce =
            new JobCounterUpdateEvent(event.getAttemptID().getTaskId()
                .getJobId());
        // TODO Setting OTHER_LOCAL_MAP for now.
        jce.addCounterUpdate(JobCounter.OTHER_LOCAL_MAPS, 1);
        eventHandler.handle(jce);
      }
      //此时处理TaskAttemptEventType.TA_ASSIGNED事件
      eventHandler.handle(new TaskAttemptContainerAssignedEvent(
          event.getAttemptID(), container, applicationACLs));
    }
  }

8、再回TaskAttemptImpl

第6步已经写了TaskAttemptEventType.TA_ASSIGNED事件的处理逻辑:new ContainerAssignedTransition()

private static class ContainerAssignedTransition implements
      SingleArcTransition<TaskAttemptImpl, TaskAttemptEvent> {
    @SuppressWarnings({ "unchecked" })
    @Override
    public void transition(final TaskAttemptImpl taskAttempt, 
        TaskAttemptEvent event) {
      final TaskAttemptContainerAssignedEvent cEvent = 
        (TaskAttemptContainerAssignedEvent) event;
      Container container = cEvent.getContainer();
      taskAttempt.container = container;
      //这是真正的Task
      taskAttempt.remoteTask = taskAttempt.createRemoteTask();
      taskAttempt.jvmID =
          new WrappedJvmID(taskAttempt.remoteTask.getTaskID().getJobID(),
              taskAttempt.remoteTask.isMapTask(),
              taskAttempt.container.getId().getContainerId());
      taskAttempt.taskAttemptListener.registerPendingTask(
          taskAttempt.remoteTask, taskAttempt.jvmID);

      taskAttempt.computeRackAndLocality();
      
      //启动容器
      //为给定的Task尝试创建要启动的容器对象
      ContainerLaunchContext launchContext = createContainerLaunchContext(
          cEvent.getApplicationACLs(), taskAttempt.conf, taskAttempt.jobToken,
          taskAttempt.remoteTask, taskAttempt.oldJobId, taskAttempt.jvmID,
          taskAttempt.taskAttemptListener, taskAttempt.credentials);
      taskAttempt.eventHandler
        .handle(new ContainerRemoteLaunchEvent(taskAttempt.attemptId,
          launchContext, container, taskAttempt.remoteTask));

      // 向投机者发送我们的容器需求得到满足的事件
      taskAttempt.eventHandler.handle
          (new SpeculatorEvent(taskAttempt.getID().getTaskId(), -1));
    }
  }

static ContainerLaunchContext createContainerLaunchContext(
      Map<ApplicationAccessType, String> applicationACLs,
      Configuration conf, Token<JobTokenIdentifier> jobToken, Task remoteTask,
      final org.apache.hadoop.mapred.JobID oldJobId,
      WrappedJvmID jvmID,
      TaskAttemptListener taskAttemptListener,
      Credentials credentials) {

    synchronized (commonContainerSpecLock) {
      if (commonContainerSpec == null) {
        commonContainerSpec = createCommonContainerLaunchContext(
            applicationACLs, conf, jobToken, oldJobId, credentials);
      }
    }

    //填写通用规范中缺少的每个容器所需的字段

    boolean userClassesTakesPrecedence =
      conf.getBoolean(MRJobConfig.MAPREDUCE_JOB_USER_CLASSPATH_FIRST, false);

    //通过从公共环境克隆来设置环境。
    Map<String, String> env = commonContainerSpec.getEnvironment();
    Map<String, String> myEnv = new HashMap<String, String>(env.size());
    myEnv.putAll(env);
    if (userClassesTakesPrecedence) {
      myEnv.put(Environment.CLASSPATH_PREPEND_DISTCACHE.name(), "true");
    }
    MapReduceChildJVM.setVMEnv(myEnv, remoteTask);

    //设置启动命令 这里会调用MapReduceChildJVM的getVMCommand()
    List<String> commands = MapReduceChildJVM.getVMCommand(
        taskAttemptListener.getAddress(), remoteTask, jvmID);

    //复制ByteBuffers以供多个容器访问。
    Map<String, ByteBuffer> myServiceData = new HashMap<String, ByteBuffer>();
    for (Entry<String, ByteBuffer> entry : commonContainerSpec
                .getServiceData().entrySet()) {
      myServiceData.put(entry.getKey(), entry.getValue().duplicate());
    }

    //构建实际的容器
    ContainerLaunchContext container = ContainerLaunchContext.newInstance(
        commonContainerSpec.getLocalResources(), myEnv, commands,
        myServiceData, commonContainerSpec.getTokens().duplicate(),
        applicationACLs);

    return container;
  }

9、MapReduceChildJVM

这里就会加载YarnChild,启动运行MapTask、ReduceTask的容器

public static List<String> getVMCommand(
      InetSocketAddress taskAttemptListenerAddr, Task task, 
      JVMId jvmID) {

    TaskAttemptID attemptID = task.getTaskID();
    JobConf conf = task.conf;

    Vector<String> vargs = new Vector<String>(8);

    vargs.add(MRApps.crossPlatformifyMREnv(task.conf, Environment.JAVA_HOME)
        + "/bin/java");

    // Add child (task) java-vm options.
    //
    // The following symbols if present in mapred.{map|reduce}.child.java.opts 
    // value are replaced:
    // + @taskid@ is interpolated with value of TaskID.
    // Other occurrences of @ will not be altered.
    //
    // Example with multiple arguments and substitutions, showing
    // jvm GC logging, and start of a passwordless JVM JMX agent so can
    // connect with jconsole and the likes to watch child memory, threads
    // and get thread dumps.
    //
    //  <property>
    //    <name>mapred.map.child.java.opts</name>
    //    <value>-Xmx 512M -verbose:gc -Xloggc:/tmp/@[email protected] \
    //           -Dcom.sun.management.jmxremote.authenticate=false \
    //           -Dcom.sun.management.jmxremote.ssl=false \
    //    </value>
    //  </property>
    //
    //  <property>
    //    <name>mapred.reduce.child.java.opts</name>
    //    <value>-Xmx 1024M -verbose:gc -Xloggc:/tmp/@[email protected] \
    //           -Dcom.sun.management.jmxremote.authenticate=false \
    //           -Dcom.sun.management.jmxremote.ssl=false \
    //    </value>
    //  </property>
    //
    String javaOpts = getChildJavaOpts(conf, task.isMapTask());
    javaOpts = javaOpts.replace("@taskid@", attemptID.toString());
    String [] javaOptsSplit = javaOpts.split(" ");
    for (int i = 0; i < javaOptsSplit.length; i++) {
      vargs.add(javaOptsSplit[i]);
    }

    Path childTmpDir = new Path(MRApps.crossPlatformifyMREnv(conf, Environment.PWD),
        YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR);
    vargs.add("-Djava.io.tmpdir=" + childTmpDir);
    MRApps.addLog4jSystemProperties(task, vargs, conf);

    if (conf.getProfileEnabled()) {
      if (conf.getProfileTaskRange(task.isMapTask()
                                   ).isIncluded(task.getPartition())) {
        final String profileParams = conf.get(task.isMapTask()
            ? MRJobConfig.TASK_MAP_PROFILE_PARAMS
            : MRJobConfig.TASK_REDUCE_PROFILE_PARAMS, conf.getProfileParams());
        vargs.add(String.format(profileParams,
            getTaskLogFile(TaskLog.LogName.PROFILE)));
      }
    }

    //添加主类及其参数
    vargs.add(YarnChild.class.getName());  // main of Child
    //传递TaskAttemptListener的地址
    vargs.add(taskAttemptListenerAddr.getAddress().getHostAddress()); 
    vargs.add(Integer.toString(taskAttemptListenerAddr.getPort())); 
    vargs.add(attemptID.toString());                      //传递任务标识符

    //最后添加jvm ID
    vargs.add(String.valueOf(jvmID.getId()));
    vargs.add("1>" + getTaskLogFile(TaskLog.LogName.STDOUT));
    vargs.add("2>" + getTaskLogFile(TaskLog.LogName.STDERR));

    //最终命令
    StringBuilder mergedCommand = new StringBuilder();
    for (CharSequence str : vargs) {
      mergedCommand.append(str).append(" ");
    }
    Vector<String> vargsFinal = new Vector<String>(1);
    vargsFinal.add(mergedCommand.toString());
    return vargsFinal;
  }

五、总结

1、MRAppMaster启动

2、初始化并启动job

3、处理各种job状态

4、启动Task

5、处理各种Task事件

6、启动尝试任务

7、处理各种尝试任务事件

8、在尝试任务的TaskAttemptEventType.TA_SCHEDULE事件处理时申请容器

9、调用java命令配置主类YarnChild启动容器运行MapTask或者ReduceTask


本文转载自: https://blog.csdn.net/lu070828/article/details/135877060
版权归原作者 隔着天花板看星星 所有, 如有侵权,请联系我们删除。

“Hadoop-MapReduce-YarnChild启动篇”的评论:

还没有评论