0


【Java EE 初阶】TCP协议的安全效率机制


1.应用层协议

确定数据组织格式,常用的协议有XML,JSON

2.传输层协议

3.UDP协议格式

4.TCP协议格式

  • **源/目的端口号:表示数据是从哪个进程来,到哪个进程去; **
  • **4位TCP报头长度:表示该TCP头部有多少个32位bit(有多少个4字节);所以TCP头部最大长度是15 * 4 = 60 **
  • **6位标志位: **
  • **URG:紧急指针是否有效 **
  • **ACK:确认号是否有效 **
  • **PSH:提示接收端应用程序立刻从TCP缓冲区把数据读走 **
  • **RST:对方要求重新建立连接;我们把携带RST标识的称为复位报文段 **
  • SYN:请求建立连接;我们把携带SYN标识的称为同步报文段
  • **FIN:通知对方,本端要关闭了,我们称携带FIN标识的为结束报文段 **
  • **16位校验和:发送端填充,CRC校验。接收端校验不通过,则认为数据有问题。此处的检验和不光包含TCP首部,也包含TCP数据部分。 **
  • **16位紧急指针:标识哪部分数据是紧急数据; **

5.TCP的安全效率机制

1.确认应答机制

解决了发收乱序的问题

TCP将每个字节的数据都进行了编号。即为序列号

每一个ACK都带有对应的确认序列号,意思是告诉发送者,我已经收到了哪些数据;下一次你从哪里开始发。

2.超时重传机制

  • **主机A发送数据给B之后,可能因为网络拥堵等原因,数据无法到达主机B; **
  • 如果主机A在一个特定时间间隔内没有收到B发来的确认应答,就会进行重发;

但是,主机A未收到B发来的确认应答,也可能是因为ACK丢失了;

因此主机B会收到很多重复数据,那么TCP协议可以利用前面提到的序列号,就可以很容易做到去重的效果

**那么,如果超时的时间如何确定? **

  • **最理想的情况下,找到一个最小的时间,保证 "确认应答一定能在这个时间内返回"。 **
  • **但是这个时间的长短,随着网络环境的不同,是有差异的。 **
  • **如果超时时间设的太长,会影响整体的重传效率; **
  • **如果超时时间设的太短,有可能会频繁发送重复的包; **

**TCP为了保证无论在任何环境下都能比较高性能的通信,因此会动态计算这个最大超时时间。 **

  • **Linux中(BSD Unix和Windows也是如此),超时以500ms为一个单位进行控制,每次判定 **
  • **超时重发的超时时间都是500ms的整数倍。 **
  • 如果重发一次之后,仍然得不到应答,等待 2*500ms 后再进行重传
  • *如果仍然得不到应答,等待 4500ms 进行重传。依次类推,以指数形式递增。 **
  • 累计到一定的重传次数,TCP认为网络或者对端主机出现异常,强制关闭连接。

3.连接管理机制

在正常情况下,TCP****要经过三次握手建立连接

** 在这个基础上,双方就可以正常的接收发送**

三次握手还有一个重要功能,就是协商序列号从哪里开始

面试题:三次挥手的过程

面试题:三次挥手过程能简化成两次吗?四次呢?

两次不可以,没有完整验证双方的收发能力

四次挥手断开连接

12表示客户端发送的断开请求,被服务器接受并应答,服务器会做一些断开前的准备

34表示应用程序的断开请求,比如调用了close()方法

接收到客户端的应答CAK之后,服务器就可以释放资源

若出现大量close_wait则可能是应用程序没有正确关闭资源

面试题:会不会有可能变成三次挥手?

** ACK是操作系统实现的TCP协议的应答**

第二个FIN是应用程序级别的,这两个操作之间是有时间差的,

大概率不会合并在一起

面试题:第二个FIN丢包了如何处理?

触发超时重传机制

4.滑动窗口机制

应答策略,对每一个发送的数据段,都要给一个ACK确认应答。收到ACK后再发送下一个数据段。这样做有一个比较大的缺点,就是性能较差。尤其是数据往返的时间较长的时候

既然这样一发一收的方式性能较低,那么我们一次发送多条数据,就可以大大的提高性能(其实是将多个段的等待时间重叠在一起了)

  • *窗口大小指的是无需等待确认应答而可以继续发送数据的最大值。上图的窗口大小就是4000***个字节(四个段)。 **
  • **发送前四个段的时候,不需要等待任何ACK,直接发送; **
  • **收到第一个ACK后,滑动窗口向后移动,继续发送第五个段的数据;依次类推; **
  • **操作系统内核为了维护这个滑动窗口,需要开辟 发送缓冲区 来记录当前还有哪些数据没有应 ****答;只有确认应答过的数据,才能从缓冲区删掉; **
  • 窗口越大,则网络的吞吐率就越高;

** 那么如果出现了丢包,如何进行重传?这里分两种情况讨论**

情况一:数据包已经抵达,ACK被丢了

**这种情况下,部分ACK丢了并不要紧,因为可以通过后续的ACK进行确认; **

情况二:数据包就直接丢了

  • **当某一段报文段丢失之后,发送端会一直收到 1001 这样的ACK,就像是在提醒发送端 "我想 ****要的是 1001" 一样; **
  • **如果发送端主机连续三次收到了同样一个 "1001" 这样的应答,就会将对应的数据 1001 - ****2000 重新发送; **
  • **这个时候接收端收到了 1001 之后,再次返回的ACK就是7001了(因为2001 - 7000)接收端 ****其实之前就已经收到了,被放到了接收端操作系统内核的接收缓冲区中; **

这种机制被称为 "高速重发控制"(也叫 "快重传")

滑动窗口效率:

效率的该地取决于窗口的大小

窗口越大效率越高

假设窗口无限大,此时发送方完全不需要等待ACK,此时效率就和UDP一样

那么滑动窗口取多大最合适呢?

每个程序启动时都会去申请系统资源,发送与接收缓存区都是申请来的系统资源

主要是通过发送方与接收方动态协商来确定的,也就是流量控制

发送方不能为了提高效率而无节制的扩大窗口大小

5.流量控制

**接收端处理数据的速度是有限的。如果发送端发的太快,导致接收端的缓冲区被打满,这个时候如果发送端继续发送,就会造成丢包,继而引起丢包重传等等一系列连锁反应。 **

因此TCP支持根据接收端的处理能力,来决定发送端的发送速度。这个机制就叫做流量控制(Flow Control)

  • *接收端将自己可以接收的缓冲区大小放入 TCP 首部中的 "窗口大小" 字段,通过ACK端通知发***送端; **
  • **窗口大小字段越大,说明网络的吞吐量越高; **
  • **接收端一旦发现自己的缓冲区快满了,就会将窗口大小设置成一个更小的值通知给发送端; **
  • **发送端接受到这个窗口之后,就会减慢自己的发送速度; **
  • **如果接收端缓冲区满了,就会将窗口置为0;这时发送方不再发送数据,但是需要定期发送一 **个窗口探测数据段,使接收端把窗口大小告诉发送端。

**接收端如何把窗口大小告诉发送端呢?回忆我们的TCP首部中,有一个16位窗口字段,就是存放了窗口大小信息; **

**那么问题来了,16位数字最大表示65535,那么TCP窗口最大就是65535字节么? **

**实际上,TCP首部40字节选项中还包含了一个窗口扩大因子M,实际窗口大小是 窗口字段的值左移 M位; **

** 由于客户端发送的频率越来越高,就会导致缓冲区填满的情况发生**

每隔一段时间进行一次窗口探测询问窗口大小,然后进行窗口更新

**如果接收端缓冲区满了,就会将窗口置为0;这时发送方不再发送数据,但是需要定期发送一 **

个窗口探测数据段,使接收端把窗口大小告诉发送端

6.拥塞控制

**虽然TCP有了滑动窗口这个大杀器,能够高效可靠的发送大量的数据。但是如果在刚开始阶段就发送大量的数据,仍然可能引发问题。 **

因为网络上有很多的计算机,可能当前的网络状态就已经比较拥堵。在不清楚当前网络状态下,贸然发送大量的数据,是很有可能引起雪上加霜的。

TCP引入 慢启动 机制,先发少量的数据,探探路,摸清当前的网络拥堵状态,再决定按照多大的速度传输数据;

  • **此处引入一个概念程为拥塞窗口 **
  • **发送开始的时候,定义拥塞窗口大小为1; **
  • **每次收到一个ACK应答,拥塞窗口加1; **
  • **每次发送数据包的时候,将拥塞窗口和接收端主机反馈的窗口大小做比较,取较小的值作为 ****实际发送的窗口; **

像上面这样的拥塞窗口增长速度,是指数级别的。"慢启动" 只是指初使时慢,但是增长速度非常快。

  • **为了不增长的那么快,因此不能使拥塞窗口单纯的加倍。 **
  • **此处引入一个叫做慢启动的阈值 **
  • 当拥塞窗口超过这个阈值的时候,不再按照指数方式增长,而是按照线性方式增长

  • **当TCP开始启动的时候,慢启动阈值等于窗口最大值; **
  • 在每次超时重发的时候,慢启动阈值会变成原来的一半,同时拥塞窗口置回1;
  • 在每次通信过程中试探网络的拥堵状态,从而调整窗口的大小

具体窗口取多大,以哪个值为主?

以小的为主

**少量的丢包,我们仅仅是触发超时重传;大量的丢包,我们就认为网络拥塞; **

当TCP通信开始后,网络吞吐量会逐渐上升;随着网络发生拥堵,吞吐量会立刻下降;拥塞控制,归根结底是TCP协议想尽可能快的把数据传输给对方,但是又要避免给网络造成太大压力的****折中方案。

7.延迟应答

**如果接收数据的主机立刻返回ACK应答,这时候返回的窗口可能比较小。 **

  • **假设接收端缓冲区为1M。一次收到了500K的数据;如果立刻应答,返回的窗口就是500K; **
  • **但实际上可能处理端处理的速度很快,10ms之内就把500K数据从缓冲区消费掉了; **
  • **在这种情况下,接收端处理还远没有达到自己的极限,即使窗口再放大一些,也能处理过 ****来; **
  • **如果接收端稍微等一会再应答,比如等待200ms再应答,那么这个时候返回的窗口大小就是 ****1M; **

**一定要记得,窗口越大,网络吞吐量就越大,传输效率就越高。我们的目标是在保证网络不拥塞的情况下尽量提高传输效率; **

**那么所有的包都可以延迟应答么?肯定也不是; **

  • **数量限制:每隔N个包就应答一次; **
  • **时间限制:超过最大延迟时间就应答一次; **

**具体的数量和超时时间,依操作系统不同也有差异;一般N取2,超时时间取200ms; **

8.捎带应答

在延迟应答的基础上,可能存在SYN报文和ACK报文同时发送的情况,我们就可以把这两个合二为一,一起发送

9.面向字节流

10.缓冲区,大小限制

创建一个TCP的socket,同时在内核中创建一个 发送缓冲区 和一个 接收缓冲区;

  • **调用write时,数据会先写入发送缓冲区中; **
  • **如果发送的字节数太长,会被拆分成多个TCP的数据包发出; **
  • **如果发送的字节数太短,就会先在缓冲区里等待,等到缓冲区长度差不多了,或者其他合适 ****的时机发送出去; **
  • **接收数据的时候,数据也是从网卡驱动程序到达内核的接收缓冲区; **
  • **然后应用程序可以调用read从接收缓冲区拿数据; **
  • **另一方面,TCP的一个连接,既有发送缓冲区,也有接收缓冲区,那么对于这一个连接,既 ****可以读数据,也可以写数据。这个概念叫做 全双工 **

由于缓冲区的存在,TCP程序的读和写不需要一一匹配

**11.**粘包问题

  • **首先要明确,粘包问题中的 "包" ,是指的应用层的数据包。 **
  • **在TCP的协议头中,没有如同UDP一样的 "报文长度" 这样的字段,但是有一个序号这样的字 ****段。 **
  • **站在传输层的角度,TCP是一个一个报文过来的。按照序号排好序放在缓冲区中。 **
  • **站在应用层的角度,看到的只是一串连续的字节数据。 **
  • **那么应用程序看到了这么一连串的字节数据,就不知道从哪个部分开始到哪个部分,是一个 **完整的应用层数据包。

解决方案(明确两个包之间的界限)

  • **对于定长的包,保证每次都按固定大小读取即可;例如上面的Request结构,是固定大小 ****的,那么就从缓冲区从头开始按sizeof(Request)依次读取即可; **
  • 对于变长的包,可以在包头的位置,约定一个4byte的字段,从而表示数据的具体长度
  • **对于变长的包,还可以在包和包之间使用明确的分隔符(应用层协议,是程序猿自己来定 ****的,只要保证分隔符不和正文冲突即可); **

思考:对于UDP协议来说,是否也存在 "粘包问题" 呢?

  • **对于UDP,如果还没有上层交付数据,UDP的报文长度仍然在。同时,UDP是一个一个把数 ****据交付给应用层。就有很明确的数据边界。 **
  • **站在应用层的站在应用层的角度,使用UDP的时候,要么收到完整的UDP报文,要么不收。 **不会出现"半个"的情况。

6.TCP异常情况

1.程序崩溃:操作系统会回收进程资源,其中包括释放文件描述符,其中就相当于调用了对应Socket的close(),之后出发FIN操作,进而进入四次挥手阶段

2.正常关机:系统会强制结束进程,回收所有的资源

3.主机掉电/网线断开:

1.接收方掉电

  • 发送方并不知道,还会一直发送数据
  • 发送数据后收不到ACK应答,会触发超时重传机制
  • 多次重传一直收不到ACK应答,会尝试进行连接重置(RST)
  • 连接充值失败,放弃连接

2.发送方掉电

  • 一般发生在长连接中,服务端与客户端会维持一个心跳包(客户端每隔一秒给服务器发送一个数据包证明自己还存活)
  • 如果服务器一直收不到心跳包,比如十秒,就自动认为客户端挂了,自行断开连接
  • 客户端网络恢复后自行重连即可(RST)

为什么TCP这么复杂?

因为既要保证可靠性,又要尽可能地提高性能

可靠性:

校验和

序列号(按序到达)

  • 确认应答
  • 超时重传
  • 连接管理
  • 流量控制
  • 拥塞控制

提高性能

  • 滑动窗口
  • 快速重传
  • 延迟应答
  • 捎带应答

其他:

定时器

超时重传定时器,心跳包定时器,TIME_WAIT定时器

怎么对UDP实现安全和效率的控制?

参考TCP的可靠性机制在应用层实现类似的逻辑

6.IP协议

在复杂的网络环境中确定一个合适的路径

  • ** 4位版本号:IP协议的版本**,** **

  • 8位服务类型:4位TOS字段,和1位保留

  • 字段(必须置为0)。4位TOS分别表示:最小延时,最大吞吐量,最高可靠性,最小成本,这四者相互冲突,只能选择一个

IP协议

  • **16位总长度:IP数据报整体占多少个字节。 **
  • 16位标识:唯一的标识主机发送的报文,如果IP报文在数据链路层被分片,那么每一篇里面的Id都是相同的
  • 3位标志字段:第一位保留,第二位置为1表示禁止分片,第三位表示"更多分片",如果分片了的话,最后一个分片置为0,其他是1。类似于一个结束标记。
  • 13位分片偏移:分片相对于原始IP报文开始处的偏移,实际偏移的字节数是这个值 * 8 得到的。因此,除了最后一个报文之外,其他报文的长度必须是8的整数倍(否则报文就不连续了)
  • 8位生存时间:数据报到达目的地的最大报文跳数(到达目标主机端口的最大跳转次数)。一般是64。每次经过一个路由,TTL -= 1,一直减到0还没到达,那么就丢弃了。这个字段主要是用来防止出现路由循环
  • **8位协议:表示上层协议的类型。 **
  • 16位头部校验和:使用CRC进行校验,来鉴别头部是否损坏
  • 32位源地址和32位目标地址:表示发送端和接收端
  • 1.一个IP只能同时表示一台主机,为了解决IP不够用
  • 一:动态分配,使用时才分配,不用时将其收回
  • 二:NET机制,一个子网所有机器,共用一个公网IP地址,子网里的机器分配内网IP,所以不同内网的IP不能互相访问

7.数据链路层重点协议

**"以太网" 不是一种具体的网络,而是一种技术标准;既包含了数据链路层的内容,也包含了 **

一些物理层的内容。

**1.以太网帧格式 **:

8.总结

MTU:

最大传输单元(分片的由来)

不同的数据链路对应的物理层产生的限制

标签: 网络 服务器 运维

本文转载自: https://blog.csdn.net/m0_57248981/article/details/130873636
版权归原作者 小锦鲤yaw 所有, 如有侵权,请联系我们删除。

“【Java EE 初阶】TCP协议的安全效率机制”的评论:

还没有评论