0


hive3从入门到精通

hive

启动Hadoop

# 启动hadoop
start-all.sh
# 检查hadoop进程
jps
# 检查各端口netstat -aplnt |grep java

检查MySQL是否启动成功

ps -aux | grep mysql
netstat -aplnt | grep 3306

安装hive

# 将软件上传到 /opt/soft 目录# 解压hivetar -zxvf apache-hive-3.1.3-bin.tar.gz 
# 目录改名mv apache-hive-3.1.3-bin hive3
# 进入配置文件目录cd /opt/soft/hive3/conf
# 复制配置文件cp hive-env.sh.template  hive-env.sh
cp hive-default.xml.template  hive-site.xml
# 编辑环境配置文件vim hive-env.sh
# 编辑配置文件vim hive-site.xml

hive-env.sh

# hadoop 安装路径exportHADOOP_HOME=/opt/soft/hadoop3/
# hive 配置文件路径exportHIVE_CONF_DIR=/opt/soft/hive3/conf/

hive-site.xml

需要修改的位置提炼如下:
<configuration><!-- 记录HIve中的元数据信息  记录在mysql中 --><property><name>javax.jdo.option.ConnectionURL</name><value>jdbc:mysql://spark03:3306/hive?useUnicode=true&amp;createDatabaseIfNotExist=true&amp;characterEncoding=UTF8&amp;useSSL=false&amp;serverTimeZone=Asia/Shanghai</value></property><!-- jdbc mysql驱动 --><property><name>javax.jdo.option.ConnectionDriverName</name><value>com.mysql.cj.jdbc.Driver</value></property><!-- mysql的用户名和密码 --><property><name>javax.jdo.option.ConnectionUserName</name><value>root</value></property><property><name>javax.jdo.option.ConnectionPassword</name><value>Lihaozhe!!@@1122</value></property><property><name>hive.metastore.warehouse.dir</name><value>/user/hive/warehouse</value></property><property><name>hive.exec.scratchdir</name><value>/user/hive/tmp</value></property></property><property><name>hive.exec.local.scratchdir</name><value>/user/hive/local</value><description>Local scratch space for Hive jobs</description></property><property><name>hive.downloaded.resources.dir</name><value>/user/hive/resources</value><description>Temporary local directory for added resources in the remote file system.</description></property><!-- 日志目录 --><property><name>hive.querylog.location</name><value>/user/hive/log</value></property><!-- 设置metastore的节点信息 --><property><name>hive.metastore.uris</name><value>thrift://spark01:9083</value></property><!-- 客户端远程连接的端口 --><property><name>hive.server2.thrift.port</name><value>10000</value></property><property><name>hive.server2.thrift.bind.host</name><value>0.0.0.0</value></property><property><name>hive.server2.webui.host</name><value>0.0.0.0</value></property><!-- hive服务的页面的端口 --><property><name>hive.server2.webui.port</name><value>10002</value></property><property><name>hive.server2.long.polling.timeout</name><value>5000</value></property><property><name>hive.server2.enable.doAs</name><value>true</value></property><!--
<property>
<name>datanucleus.autoCreateSchema</name>
<value>false</value>
</property>

<property>
<name>datanucleus.fixedDatastore</name>
<value>true</value>
</property>
--><property><name>hive.execution.engine</name><value>mr</value></property><property><name>hive.metastore.schema.verification</name><value>false</value><description>
          Enforce metastore schema version consistency.
          True: Verify that version information stored in is compatible with one from Hive jars.  Also disable automatic
                schema migration attempt. Users are required to manually migrate schema after Hive upgrade which ensures
                proper metastore schema migration. (Default)
          False: Warn if the version information stored in metastore doesn't match with one from in Hive jars.
        </description></property></configuration>

注意:上面配置文件中的路径在 vi 编辑器下 全局替换

:%s@\${system:java.io.tmpdir}@/tmp/hive-log@g

不要使用图形化 不然每次保存后3215行都会有个 &#8 特殊字符 如果产生删除即可 具体报错信息 后面有单独的描述

上传 MySQL 连接驱动 jar 包到 hive 安装目录的lib目录下:

/opt/soft/hive3/lib

jar 包有两个 分别为:

  • mysql-connector-j-8.0.33.jar
  • protobuf-java-3.22.2.jar

删除原有的 protobuf-java-2.5.0.jar 文件

guava版本冲突

删除 hive/lib目录中的 guava-19.0.jar

拷贝hadoop/share/hadoop/common/lib目录中的 guava-27.0-jre.jar 到 hive/lib 目录

rm -f /opt/soft/hive3/lib/guava-19.0.jar
cp -v /opt/soft/hadoop3/share/hadoop/common/lib/guava-27.0-jre.jar /opt/soft/hive3/lib

配置环境变量

vim /etc/profile
exportHIVE_HOME=/opt/soft/hive3
exportPATH=$PATH:$HIVE_HOME/bin
source /etc/profile

初始化hive的元数据库

注意初始初始元素中库之前 保证 hadoop 和 mysql 正常启动

schematool -initSchema -dbType  mysql

报错解解决:

Exception in thread "main" java.lang.RuntimeException: com.ctc.wstx.exc.WstxParsingException: Illegal character entity: expansion character (code 0x8
at [row,col,system-id]: [3215,96,"file:/usr/local/hive/conf/hive-site.xml"]
at org.apache.hadoop.conf.Configuration.loadResource(Configuration.java:3051)...
at org.apache.hadoop.util.RunJar.main(RunJar.java:236)
Caused by: com.ctc.wstx.exc.WstxParsingException: Illegal character entity: expansion character (code 0x8
at [row,col,system-id]: [3215,96,"file:/usr/local/hive/conf/hive-site.xml"]
at com.ctc.wstx.sr.StreamScanner.constructWfcException(StreamScanner.java:621)...
at org.apache.hadoop.conf.Configuration.loadResource(Configuration.java:3034)... 17more

报错原因:

hive-site.xml配置文件中,3215行(见报错记录第二行)有特殊字符

解决办法:

进入hive-site.xml文件,跳转到对应行,删除里面的 &#8 特殊字符即可
Caused by: java.net.URISyntaxException: Relative path in absolute URI: ${system:java.io.tmpdir%7D/$%7Bsystem:user.name%7D
    at java.net.URI.checkPath(URI.java:1822)
    at java.net.URI.<init>(URI.java:745)
    at org.apache.hadoop.fs.Path.initialize(Path.java:260)

解决方案:将hive-site.xml配置文件的
hive.querylog.location
hive.exec.local.scratchdir
hive.downloaded.resources.dir
三个值(原始为$标识的相对路径)写成绝对值
# 全局替换
:%s@\${system:java.io.tmpdir}@/tmp/hive-log@g

远程模式

# 启动服务端
hive --service metastore &
hive --service hiveserver2 &# 后台运行nohup hive --service metastore > /dev/null 2>&1&nohup hive --service hiveserver2 > /dev/null 2>&1&

hiveserver2 start
nohup hiveserver2 >/dev/null 2>&1&
# 客户端连接
hive
beeline -u jdbc:hive2://spark01:10000 -n root
beeline jdbc:hive2://spark01:10000> show databases;

体验

usedefault;createtable person (
    id int,
    phonenum bigint,
    salary dicimal,
    name string
);showtables;insertinto person values(1001,13966668888,9999.99,"张三");
songsong,bingbing_lili,xiao song:18_xiaoxiao song:19
longlong,pingping_liuliu,xiao long:8_xiaoxiao long:9
drop table person;
create table person (
    name string,
    friends array<string>,
    childrens map<string,int>
)
 row format delimited fields terminated by ',' 
 collection items terminated by '_' 
 map keys terminated by ':' 
 lines terminated by '\n';
loaddatalocal inpath  '/root/person.txt'intotable person;
droptabledata;createtabledata(
    name string, 
       amount int)row format delimited fieldsterminatedby','linesterminatedby'\n';loaddatalocal inpath  '/root/data.txt'intotabledata;
selectcount(*)fromdata;selectcount(*)fromdatagroupby name;select name,max(t)fromdatagroupby name;select name,max(t)fromdatagroupby name orderbymax(t);
set mapreduce.framework.name=local;本地
set mapreduce.framework.name=yarn; yarn

set hive.exec.mode.local.auto=false;set hive.vectorized.execution.enabled=true;//开启set hive.vectorized.execution.enabled=false;//关闭set mapreduce.framework.name=local;set hive.exec.mode.local.auto=false;set hive.vectorized.execution.enabled=false;

DDL

操作数据库

创建数据库
-- 创建数据库不指定路径createdatabase db_hive01;-- 创建数据库指定 hdfs 路径createdatabase db_hive02 location '/db_hive02';-- 创建数据库附加 dbpropertiescreatedatabase  db_hive03  with dbproperties ('create-date'='2023-04-17','create_author'='lihaozhe');
查询数据库
-- 查看所有数据库showdatabases;-- 模糊查看所有数据库-- * 代表所有-- | 代表或showdatabaseslike'db_hive*';-- 查看数据库信息descdatabase db_hive03;-- 查看数据库详尽信息describedatabase db_hive03;-- 查看数据库更详尽信息describedatabaseextended db_hive03;
修改数据库
-- 修改 dbpropertiesalterdatabase db_hive03 SET dbproperties ('crate_data'='2023-04-18');-- 修改locationalterdatabase db_hive02 SET location '/db_hive002';-- 修改 owner useralterdatabase database_name set owner user lhz;
删除数据库
-- 删除空数据库dropdatabase db_hive02 restrict;-- 删除非空数据库dropdatabase db_hive03 cascade;
切换数据库
use db_hive01;

DML

操作数据表

普通表

临时表 temporary

外部表 external

-- 利用 select 语句查询结果 创建一张表createtableasselect-- 复刻一张已经存在的表结构 但是 不包含数据createtablelike
基本数据类型

数据类型说明定义tinyint1 byte 有符号整型smallint2 byte 有符号整型int4 byte 有符号整型bigint8 byte 有符号整型float4 byte 单精度浮点数double8 byte 双精度浮点数dicimal十进制精准数据类型varchar字符序列 需要指定最大长度 范围[1~65535]string字符串 无需指定最大长度timestamp时间binary二进制数据booleantrue falsearray一组相同数据类型的集合array<string>map一组相同数据类型的键值对map<string,int>struct由多个属性组成,每个属性都有自己的属性名和数据类型structid:int,name:string

内部表
简单表
createtable person (
    id int,
    phonenum bigint,
    salary dicimal,
    name string
);showtables;insertinto person values(1001,13966668888,9999.99,"张三");
简单数据类型
createtabledata(
    name string, 
       amount int)row format delimited fieldsterminatedby','linesterminatedby'\n'
location '/user/hive/warehouse/lihaozhe.db/data';
# 上传文件到Hive表指定的路径
hdfs dfs -put /root/data.csv /user/hive/warehouse/lihaozhe.db/data
复杂数据类型
vim /root/person.txt
songsong,bingbing_lili,xiao song:18_xiaoxiao song:19
longlong,pingping_liuliu,xiao long:8_xiaoxiao long:9
droptable person;createtable person (
    name string,
    friends array<string>,
    childrens map<string,int>)row format delimited fieldsterminatedby',' 
 collection items terminatedby'_' 
 map keysterminatedby':'linesterminatedby'\n';loaddatalocal inpath  '/root/person.txt'intotable person;
json数据类型

json函数

  • ​ get_json_object
  • ​ json_tuple

json serde 加载数据

{"name":"user01","amount":"100"}
{"name":"lihaozhe","friends":["lizhe","lanlan","jinjin"],"student":["xiaohuihui":15000,"huixiaoxiao":18000],"address":{"province":"jilin","city":"liaoyuan","district":"dongliao"}}

案例一

createtable video (info string);loaddatalocal inpath '/root/video.log'intotable video;select*from video limit10;selectcount(*)from video;
select
    get_json_object(info,'$.id')as id,
    get_json_object(info,'$.nickname')as nickname,
    get_json_object(info,'$.gold')as gold
from video limit5;
select
   json_tuple(info,'id','nickname','gold')as(id,nickname,gold)from video limit5;

案例二

createtable video(
     id string,
    uid string,
    nickname string,
    gold int,
    watchnumpv int,
    watchnumuv int,
    hots int,
    nofollower int,
    looktime int,
    smlook int,
    follower int,
    gifter int,
    length int,
    area string,
    rating varchar(1),
    exp bigint,type string
)row format serde 'org.apache.hive.hcatalog.data.JsonSerDe';
loaddatalocal inpath '/root/video.log'intotable video;
外部表
create external tabledata(
    name string, 
       amount int)row format delimited fieldsterminatedby','linesterminatedby'\n'
location '/user/hive/warehouse/lihaozhe.db/data';
内部表与外部表转换
-- 内部表转外部表altertable tblName set tblproperties('external'='true');-- 外部表转内部表altertable tblName set tblproperties('external'='false');
查看表
-- 查看表showtables;-- 查看某数据库下的某张表showtablesin lihaozhe;-- 查看表showtables;-- 模糊查看数据表-- * 代表所有-- | 代表或showtableslike'per*';-- 查看基本表信息describe person;-- 查看基本表详细信息describeextended person;-- 查看基本表详细信息并格式化展示describe formatted person;
修改表
-- 修改表名称altertable person renameto tb_user;-- 添加字段 向末尾追加altertable tb_user addcolumns(gender tinyint);-- 修改字段名称及类型altertable tb_user change gender age smallint;-- 删除字段
删除表
droptable tb_user;
清空表
truncatetable video;

DQL

准备数据

部门表 dept.csv
10,行政部,1700
20,财务部,1800
30,教学部,1900
40,销售部,1700
hdfs dfs -mkdir -p /quiz01/dept
hdfs dfs -put /root/dept.csv /quiz01/dept
create external table dept (
    dept_id intcomment'部门ID',
    dept_name string comment'部门名称',
    location_code intcomment'部门位置')row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/quiz01/dept';
loaddatalocal inpath '/root/dept.csv'intotable dept;
员工表 emp.csv
7369,张三,研发,800.00,30
7499,李四,财务,1600.00,20
7521,王五,行政,1250.00,10
7566,赵六,销售,2975.00,40
7654,侯七,研发,1250.00,30
7698,马八,研发,2850.00,30
7782,金九,行政,2450.0,30
7788,银十,行政,3000.00,10
7839,小芳,销售,5000.00,40
7844,小明,销售,1500.00,40
7876,小李,行政,1100.00,10
7900,小元,讲师,950.00,30
7902,小海,行政,3000.00,10
7934,小红明,讲师,1300.00,30
hdfs dfs -mkdir -p /quiz01/emp
hdfs dfs -put /root/emp.csv /quiz01/emp
create external table emp (
    emp_id intcomment'员工ID',
    emp_name string comment'员工姓名',
    emp_job string comment'员工岗位',
    emp_salary decimal(8,2)comment'员工薪资',
    dept_id intcomment'员工隶属部门ID')row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/quiz01/emp';
loaddatalocal inpath '/root/emp.csv'intotable emp;
居民表 person.csv
hdfs dfs -mkdir -p /quiz02/person
hdfs dfs -put /root/person.csv /quiz02/person
CREATE external TABLE`person`(`id`intCOMMENT'主键',`id_card`varchar(18)COMMENT'身份证号码',`mobile`varchar(11)COMMENT'中国手机号',`real_name`varchar(15)COMMENT'身份证姓名',`uuid`varchar(32)COMMENT'系统唯一身份标识符')row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/quiz02/person';
loaddatalocal inpath '/root/person.csv'intotable person;
地区表 region.csv
hdfs dfs -mkdir -p /quiz02/region
hdfs dfs -put /root/region.csv /quiz02/region
CREATE external TABLE`region`(`parent_code`intCOMMENT'当前地区的上一级地区代码',`region_code`intCOMMENT'地区代码',`region_name`varchar(10)COMMENT'地区名称')row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/quiz02/region';
loaddatalocal inpath '/root/region.csv'intotable region;

单表查询

-- 查询所有select*from dept;-- 按照指定字段查询select dept_name from dept;-- 列别名select dept_name as name from dept;-- limit 分页查询select*from emp limit5,5-- where 按条件查询select*from emp where dept_id =10;-- 关系运算符-- = != > >= < <=-- inselect*from emp where dept_id in(20,40);-- not inselect*from emp where dept_id notin(20,40);-- like select*from emp where emp_name like'小%';-- not likeselect*from emp where emp_name notlike'小%';-- 逻辑运算符-- andselect*from emp where  dept_id =30and emp_salary >1000;-- between andselect*from emp where  dept_id =30and emp_salary >1000and emp_salary <2000;select*from emp where  dept_id =30and emp_salary between1000and2000;--not between andselect*from emp where  dept_id =30and emp_salary notbetween1000and2000;-- orselect*from emp where  dept_id =10or dept_id =40;-- not !select*from emp where  dept_id !=10;select*from emp wherenot dept_id =10;-- 聚合函数-- count(*) count(1) count(column_name)selectcount(*)from emp;selectcount(*)as total from emp;-- maxselectmax(emp_salary)from emp;-- minselectmin(emp_salary)from emp;-- sumselectsum(emp_salary)from emp;-- avgselectavg(emp_salary)from emp;-- group by 分组查询select dept_id,avg(emp_salary)as avg_salary from emp groupby dept_id;-- havingselect dept_id,avg(emp_salary)as avg_salary from emp groupby dept_id having avg_salary >2000;-- where having select dept_id,avg(emp_salary)as avg_salary from emp where dept_id !=10groupby dept_id having avg_salary >2000;-- order by 全局排序select*from emp orderby dept_id desc,emp_salary desc;select dept_id,max(emp_salary)from emp groupby dept_id;select dept_id,max(emp_salary)as max_salary from emp groupby dept_id orderby max_salary desc;-- sort by (每个reduce)内部排序select*from emp sort by dept_id desc-- 查看 reduce 数量set mapreduce.job.reduces;-- 设置 reduce 数量 仅在当前连接有效 连接断开失效set mapreduce.job.reduces=2;select*from emp sort by dept_id desc;-- 将查询结果写入到文件insert overwrite local directory '/root/sort-result'select*from emp sort by dept_id desc;-- distribute by 分区 类似与 mapreduce 中的 partation 自定义分区set mapreduce.job.reduces=2;insert overwrite local directory '/root/distribute-result'select*from emp distribute by dept_id sort by emp_salary desc;-- distribute by 分区规则 根据字段的hash值 与 reduce 的数量 进行相除 余数 相同的在到一个分区-- hvie 要求 distribute by 语句执行 在 sort by 语句之前-- 执行结束之后 将 mapreduce.job.reduces 设置为 -1 不然 会影响 分区 分桶 load-- cluster by 只能升序 不能降序 cluster by = sort by + distribute byselect*from emp cluster by dept_id;

多表查询

-- 避免笛卡尔积select*from dept, emp where dept.dept_id = emp.dept_id;-- 等值joinselect*from dept join emp where dept.dept_id = emp.dept_id;-- 等值joinselect*from dept join emp where dept.dept_id = emp.dept_id;-- left join 左外连接select 
 d.dept_id,dept_name,location_code,emp_id,emp_name,emp_job,emp_salary
 from dept d leftjoin emp e where d.dept_id = e.dept_id;-- right join 右外连接select 
 d.dept_id,dept_name,location_code,emp_id,emp_name,emp_job,emp_salary
 from dept d rightjoin emp e where d.dept_id = e.dept_id;-- full join 满外连接select 
 d.dept_id,dept_name,location_code,emp_id,emp_name,emp_job,emp_salary
 from dept d fulljoin emp e where d.dept_id = e.dept_id;-- union 上下拼接 去重select*from emp where dept_id =10or dept_id =40;select*from emp where dept_id in(10,40);select*from emp where dept_id =10unionselect*from emp where dept_id =40;-- union all 上下拼接 不去重select*from emp where dept_id =10unionallselect*from emp where dept_id =40;-- 自关联select*from region where region_code ='220422';

函数

# 设施本地模式set hive.exec.mode.local.auto=true;set mapperd.job.tracker=local
-- 算数运算函数-- + - * / % & | ^ ~-- 数值函数-- round 四舍五入select rount(3.3)as num;select rount(3.5)as num;-- ceil 向上取整select ceil(3.3)as num;-- floor 向下取整select floor(3.9)as num;-- modselectmod(9,2);-- 字符串函数-- substr 字符串截取 substr(column_name,start_index,length)select substr(id_card,3,3),id_card from person;-- substring 字符串截取 substring(column_name,start_index,length)select substring(id_card,3,3),id_card from person;-- split 字符串分割select split('2023-04-19','-')-- nvl 判空 替换 null 值select nvl("李昊哲",1)select nvl(null,1)-- concat 字符串拼接select  concat('slogan',' - ','桃李不言下自成蹊')-- concat 字符串拼接select  concat_ws('-',array('2022','04','19'))-- get_json_object 解析 json 字符串select get_json_object('{"name":"李昊哲","age":41}','$.name')as name;select get_json_object('[
{"name":"李昊哲","age":41},
{"name":"李哲","age":16}
]','$.[0].name')as name;-- json_tupleselect json_tuple('{"name":"李昊哲","age":41}','name','age')as(name,age);-- 日期函数-- unix_timestampselect unix_timestamp();select unix_timestamp('1983-11-22 20:30:00','yyyy-MM-dd HH:mm:ss');-- from_unixtimeselect from_unixtime(438381000);-- current_dateselectcurrent_date();-- current_timestampselectcurrent_timestamp();-- yearselectyear('1983-11-22 20:30:00');-- monthselectmonth('1983-11-22 20:30:00');-- dayselectday('1983-11-22 20:30:00');-- hoursselectyear('1983-11-22 20:30:00');-- minuteselectminute('1983-11-22 20:30:00');-- secondselectsecond('1983-11-22 20:30:00');-- datediff 两个日期相差天数 (结束日期减去开始日期)select datediff('1983-11-22','1983-10-18');-- date_add 日期增加几天select date_add('1983-11-22',3);-- date_sub 日期减少几天select date_sub('1983-11-22',3);-- date_format 日期格式化select date_format('1983-11-22 20:30:00','yyyy年MM月dd日 HH时mm分ss秒');-- 读取身份证获取出生日期 输出格式为unix_stamp-- 1、字符串截取 2、日期转换select substr(id_card,7,8)from person limit3;select unix_timestamp(substr(id_card,7,8),'yyyyMMdd')from person limit3;-- 读取身份证获取出生日期 输出格式为 yyyy-MM-dd-- 1、字符串截取 2、日期格式化select substr(id_card,7,8)from person limit3;select unix_timestamp(substr(id_card,7,8),'yyyyMMdd')from person limit3;select from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd'))from person limit3;select substr(from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd')),1,10)from person limit3;select date_format(from_unixtime( unix_timestamp(substr(id_card,7,8),'yyyyMMdd')),'yyyy-MM-dd')from person limit3;-- 流程控制函数-- case when-- 90以上A 80~90B 70~80C 60~70D 60以下Eselect
stu_id,course_id,casewhen score >=90then'A'when score >=80then'B'when score >=70then'C'when score >=60then'D'else'E'endas grade
from score;-- if 三目运算 if(条件表达式,条件为真的返回结果,条件为假的返回结果)selectif(1=2,'托尼','玛丽')as`发型师`-- 结合字符串函数 时间函数 流程控制函数 计算身份证信息-- 根据身份证号 判断性别 身份证号 第十七位 奇数为男性 偶数为女性select id_card,if(mod(substr(id_card,17,1),2)=1,'精神小伙儿','扒蒜老妹儿') gender from person;-- 根据身份证号 找出所有男性信息select*,mod(substr(id_card,17,1),2) gender from person wheremod(substr(id_card,17,1),2)=1;-- 根据身份证号 计算男性人数和女性人数selectif(mod(substr(id_card,17,1),2)=1,'精神小伙儿','扒蒜老妹儿') gender ,count(*) gender_count
from person groupbymod(substr(id_card,17,1),2)limit10;-- 根据身份证号 计算生日排序select
date_format(from_unixtime( unix_timestamp(substr(id_card,7,8),'yyyyMMdd')),'yyyy-MM-dd')as`birthday`from person
orderby unix_timestamp(`birthday`,'yyyy-MM-dd')desc-- 根据身份证号 计算年龄-- 1、当前月份-出生月份 > 0 说明 已经过完生日 及 使用 当前年份 - 出生年份 = 年龄-- 2、当前月份-出生月份 < 0 说明 未过生日 及 使用 当前年份 - 出生年份 -1 = 年龄-- 3、当前月份-出生月份 = 0 -- 3.1、当前日-出生日 > 0 说明 已经过完生日 及 使用 当前年份 - 出生年份 = 年龄-- 3.2、当前日-出生日 < 0 说明 未过生日 及 使用 当前年份 - 出生年份 -1 = 年龄-- 3.3、当前日-出生日 = 0 说明 生日视作过完了 及 使用 当前年份 - 出生年份  = 年龄selectif(month(`current_date`())-month(from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd')))>0,year(`current_date`())-year(from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd'))),if(month(`current_date`())-month(from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd')))<0,year(`current_date`())-year(from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd')))-1,if(day(`current_date`())-day(from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd')))>0,year(`current_date`())-year(from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd'))),if(day(`current_date`())-day(from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd')))<0,year(`current_date`())-year(from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd')))-1,year(`current_date`())-year(from_unixtime(unix_timestamp(substr(id_card,7,8),'yyyyMMdd')))))))as`age`from person;-- 集合函数-- size-- array 声明一个集合select array(0,1,2,3,4)as nums;-- array_contains 判断 array 中是否包含某元素select array_contains(array(0,1,2,3,4),3)as num;-- sort_array array中元素排序 目前只有升序select sort_array(array(4,1,3,2,0))as nums;-- size 集合中元素的数量select size(array(0,1,2,3,4))as nums;-- mapselect map('校长',10000,'讲师',8000);-- {"校长":10000,"讲师":8000} -- map_keys 返回 map 中 所有的 keyselect map_keys(`map`('校长',10000,'讲师',8000))askeys;-- map_values 返回 map 中 所有的 valueselect map_values(`map`('校长',10000,'讲师',8000))as v

-- struct 声明结构体属性名称select struct('real_name','李昊哲','age',41);-- {"col1":"real_name","col2":"李昊哲","col3":"age","col4":41} -- named_struct 声明结构体属性和值select named_struct('real_name','李昊哲','age',41);-- {"real_name":"李昊哲","age":41}

练习数据

学生表

讲师表

课程表

分数表

学生表 student.csv
hdfs dfs -mkdir -p /quiz03/student
hdfs dfs -put /root/student.csv /quiz03/student
create external table student (
    stu_id string comment'学生ID',
    stu_name string comment'学生姓名',
    birthday string comment'出生日期',
    gender string comment'学生性别')row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/quiz03/student';
loaddatalocal inpath '/root/student.csv'intotable student;
讲师表 teacher.csv
hdfs dfs -mkdir -p /quiz03/teacher
hdfs dfs -put /root/teacher.csv /quiz03/teacher
create external table teacher (
    tea_id string comment'课程ID',
    tea_name string comment'课程名称')row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/quiz03/teacher';
loaddatalocal inpath '/root/teacher.csv'intotable teacher;
课程表 course.csv
hdfs dfs -mkdir -p /quiz03/course
hdfs dfs -put /root/course.csv /quiz03/course
create external table course (
    course_id string comment'课程ID',
    course_name string comment'课程名称',
    tea_id string comment'讲师ID')row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/quiz03/course';
loaddatalocal inpath '/root/course.csv'intotable course;
分数表 score.csv
hdfs dfs -mkdir -p /quiz03/score
hdfs dfs -put /root/score.csv /quiz03/score
create external table score (
    stu_id string comment'学生ID',
    course_id string comment'课程ID',
    score intcomment'成绩')row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/quiz03/score';
loaddatalocal inpath '/root/course.csv'intotable course;

综合练习

-- 查询所有学生信息select*from student;-- 查询周姓学生信息select*from student where stu_name like'周%';-- 查询周姓学生数量selectcount(*)as zhou_count from student where stu_name like'周%';-- 查询 学生ID 004 的分数 超过 85 的成绩 select*from score where stu_id =004and score >85;-- 查询 学生ID 004 的分数 超过 85 的成绩 select*from score where stu_id =004and score >85;-- 查询 学生程ID 004 的成绩降序select*from score where stu_id =01orderby score desc;-- 查询 数学成绩不及格学生及其对应的成绩 安装学生ID排序select stu.stu_id, stu.stu_name,s.score
 from student stu join course c join score s
 on  stu.stu_id = s.stu_id and c.course_id = s.course_id
 and c.course_name ='数学'and s.score <60orderby stu.stu_id;-- 查询男女生人数select gender,count(*)as gender_count from student groupby gender;-- 查询编号为 02 的课程平均成绩selectavg(score)from score where course_id =02;-- 查询每科课程平均成绩selectavg(score)from score groupby course_id;-- 查询参加考试学生人数selectcount(distinct stu_id)as stu_count from score;-- 查询每科有多少学生参加考试select course_id,count(*)as stu_count from score groupby course_id;-- 查询未参加考试的学生信息select stu_id,stu_name from student where stu_id notin(selectdistinct stu.stu_id  from student stu leftjoin course c leftjoin score s
 on stu.stu_id = s.stu_id and c.course_id = s.course_id
 orderby stu.stu_id
)-- 查询平均成绩及格(60分)的学生的平均成绩select stu_id,avg(score) avg_score
 from score
 groupby stu_id
 having avg_score >=60;-- 查询选修至少 4 门 以上课程学生的学号select stu_id,count(course_id) course_count from score
 groupby stu_id
 having course_count >=4;

-- 查询姓氏相同学生名单 并且同姓人数大于 2 的姓氏select first_name ,count(*) first_name_count from(select stu_id,stu_name,substr(stu_name,1,1)as first_name
 from student
) ts
 groupby ts.first_name
 having first_name_count >1;-- 查询每门功课的学生的平均成绩 按照平均成绩升序 平均成绩相同按照课程编号降序select course_id,avg(score) avg_score
 from score
 groupby course_id
 orderby avg_score,course_id desc;-- 统计参加考试人数大于等于 15 的学科select course_id,count(*)as stu_count from score groupby course_id having stu_count >15;-- 查询学生总成绩并按照总成绩降序排序select stu_id,sum(score) sum_score
 from score
 groupby stu_id
 orderby sum_score desc;-- 按照指定格式显示 stu_id 语文 数学 英语 选课数 平均成绩select
 s.stu_id,sum(`if`(c.course_name='语文',score,0))as`语文`,sum(`if`(c.course_name='数学',score,0))as`数学`,sum(`if`(c.course_name='英语',score,0))as`英语`,count(s.course_id)as`选课数`,avg(s.score)as`平均成绩`from course c leftjoin score s
 on c.course_id = s.course_id
 groupby s.stu_id
 orderby`平均成绩`desc;-- 查询一共参加了三门功课且其中一门为语文的学生id 和 姓名select s.stu_id,stu_name from(select t1.stu_id ,count(t1.course_id) course_count  from(select stu_id,course_id from score
        where stu_id in(select stu_id from score where course_id ="01")) t1 groupby  t1.stu_id having course_count >=3) t2 join student s on t2.stu_id = s.stu_id;-- 分解-- 查询该学生的姓名select s.stu_id,stu_name from-- 成绩表中学习科目数量 >=3 科的学生(select t1.stu_id ,count(t1.course_id) course_count  from--  报名了语文的学生还报名了那些学科(select stu_id,course_id from score
        where stu_id in(-- 查询报名了语文的学生IDselect stu_id from score where course_id ="01")) t1 groupby  t1.stu_id having course_count >=3) t2 join student s on t2.stu_id = s.stu_id;-- 查询两门以上的课程不及格学生的学号及其平均成绩-- 1、先按照学生分组 过滤出成绩低于60的数量 大于1-- 2、计算所有学生的平均成绩-- 3、两个子查询相互joinselect  t1.stu_id,t2.avg_score from(select stu_id,sum(if(score <60,1,0))as result from score groupby stu_id having result >1) t1
 leftjoin(select stu_id,avg(score)as avg_score from score groupby stu_id) t2 on t1.stu_id =t2.stu_id;-- 查询所有学生的学号、姓名、选课数、总成绩select
    stu.stu_id,stu.stu_name,count(s.course_id) count_course ,nvl(sum(s.score),0) total_score
from student stu leftjoin score s on stu.stu_id = s.stu_id
groupby stu.stu_id, stu.stu_name orderby stu.stu_id;-- 平均成绩大于 85 的所有学生的学号、姓名、平均成绩select
    stu.stu_id,stu.stu_name ,nvl(avg(s.score),0)as`avg_score`from student stu leftjoin score s on stu.stu_id = s.stu_id
groupby stu.stu_id, stu.stu_name having nvl(avg(s.score),0)>85orderby stu.stu_id

-- 查询学生的选课情况:学号,姓名,课程号,课程名称select student.stu_id,student.stu_name,c.course_id,c.course_name from student
rightjoin score s on student.stu_id = s.stu_id
leftjoin course c on s.course_id = c.course_id

-- 查询学生的没有选课情况:学号,姓名select stu_id,stu_name from(select student.stu_id,student.stu_name, s.course_id from student
leftjoin score s on student.stu_id = s.stu_id
leftjoin course c on s.course_id = c.course_id
) t where course_id isnull-- 查询出每门课程的及格人数和不及格人数select c.course_id,course_name,pass,fail 
from course c join(select
 course_id,sum(if(score >=60,1,0))as`pass`,sum(if(score <60,1,0))as`fail`from score groupby course_id
) t on c.course_id = t.course_id

-- 查询课程编号为03且课程成绩在80分以上的学生的学号和姓名及课程信息select t1.stu_id,s.stu_name,t1.course_id,c.course_name,t1.score from(select*from score where course_id ='03'and score >80) t1
leftjoin student s on s.stu_id = t1.stu_id
leftjoin course c on t1.course_id = c.course_id

-- 查询语文成绩低于平均分数的学生是谁,教师是谁select t3.stu_id,t3.stu_name,t3.`avg_score`,t.tea_name from(select t2.stu_id,t2.`avg_score`,s.stu_name,t2.course_id,c.tea_id from(select t1.stu_id,t1.course_id,t1.`avg_score`from(select stu_id,s.course_id,avg(score)as`avg_score`from score s rightjoin(select course_id from course where course_name ='语文') t1 on t1.course_id = s.course_id
         groupby stu_id,s.course_id) t1
        where t1.`avg_score`<(selectavg(score)as`avg_score`from score s rightjoin(select course_id from course where course_name ='语文') t1 on t1.course_id = s.course_id)) t2 leftjoin student s on t2.stu_id = s.stu_id
    leftjoin course c on t2.course_id = c.course_id
)t3 leftjoin teacher t on t3.tea_id = t.tea_id;-- 查询所有学生总成绩和平均成绩,-- 且他们的总成绩低于平均成绩的有多少个人,-- 高于平均成绩的有多少人,-- 低于平均成绩的男生和女生分别有多少人,-- 且他们的任课老师是谁。-- 统计各科成绩各分数段人数:课程编号,课程名称,[100-85],[85-70],[70-60],[0-60]及所占百分比-- 方法一select course_id,
       concat(round((sum(`if`(score >=85,1,0))/count(*))*100,2),'%')as`a`,
       concat(round((sum(`if`(score <85,`if`(score >=70,1,0),0))/count(*))*100,2),'%')as`b`,
       concat(round((sum(`if`(score <70,`if`(score >=60,1,0),0))/count(*))*100,2),'%')as`c`,
       concat(round((sum(`if`(score <60,1,0))/count(*))*100,2),'%')as`d`from score groupby course_id;-- 方法二select course_id,
       concat(round((sum(`if`(score >=85,1,0))/count(*))*100,2),'%')as`a`,
       concat(round((sum(`if`(score between70and84,1,0))/count(*))*100,2),'%')as`b`,
       concat(round((sum(`if`(score between60and74,1,0))/count(*))*100,2),'%')as`c`,
       concat(round((sum(`if`(score <60,1,0))/count(*))*100,2),'%')as`d`from score groupby course_id;-- 查询各科成绩最高分、最低分和平均分,以如下形式显示:-- 课程ID,课程name,最高分,最低分,平均分,及格率,中等率,优良率,优秀率-- 及格为>=60,中等为:70-80,优良为:80-90,优秀为:>=90select c.course_id                                                                    as`课程ID`,
       c.course_name                                                                  as`课程name`,max(score)as`最高分`,min(score)as`最低分`,round(avg(score),2)as`平均分`,
       concat(round(sum(`if`(score >=60,1,0))/count(*)*100,2),'%')as`及格率`,
       concat(round(sum(if(score between70and79,1,0))/count(*)*100,2),'%')as`中等率`,
       concat(round(sum(if(score between80and89,1,0))/count(*)*100,2),'%')as`优良率`,
       concat(round(sum(`if`(score >=90,1,0))/count(*)*100,2),'%')as`优秀率`from course c leftjoin score s on c.course_id = s.course_id
groupby c.course_id, c.course_name;-- 查询每门课程的教师学生有谁,男生和女生的比例是多少,select t1.course_id,t1.gender,concat(round((t1.count_gender / t2.count_course_student)*100,2),'%')as`proportion`from(select  c.course_id, stu.gender,count(stu.gender)as`count_gender`from course c leftjoin score s on c.course_id = s.course_id leftjoin student stu on s.stu_id = stu.stu_id
groupby c.course_id, stu.gender
) t1
join(select  c.course_id,count(*)as`count_course_student`from course c leftjoin score s on c.course_id = s.course_id leftjoin student stu on s.stu_id = stu.stu_id
groupby c.course_id
) t2 on t1.course_id = t2.course_id
join score s on t1.course_id = s.course_id

-- 且他们的每门学科的成绩是男生比较优一些还是女生比较优一些,并且每门课程的最高分是谁。select s.course_id,max(s.score)as`max_score`,min(s.score)as`min_score`from course join score s on course.course_id = s.course_id groupby s.course_id

-- 课程编号为"01"且课程分数小于60,按分数降序排列的学生信息select s.stu_id, stu.stu_name, stu.birthday, stu.gender,s.score
from score s join student stu on s.stu_id = stu.stu_id
where s.score <60orderby s.score desc-- 查询所有课程成绩在70分以上的学生的姓名、课程名称和分数,按分数升序select stu.stu_name, c.course_name, s2.score
from student stu join(select s.stu_id,sum(`if`(s.score >=70,0,1))as`is_ok`from score s groupby s.stu_id having is_ok =0) t1
on stu.stu_id = t1.stu_id leftjoin score s2 on stu.stu_id = s2.stu_id leftjoin course c on s2.course_id = c.course_id
orderby s2.score

-- 查询某学生不同课程的成绩相同的学生编号、课程编号、学生成绩select s1.stu_id,collect_list(s1.course_id)as course_id,collect_set(s1.score)as score
from score s1 join score s2 on s1.stu_id = s2.stu_id
and s1.course_id != s2.course_id
and s1.score == s2.score
groupby s1.stu_id

高级聚合函数

分组排序取TopN
-- row_number() over () 连续序号-- over()里头的分组以及排序的执行晚于 where 、group by、order by 的执行。select*,row_number()over()as`num`from score;-- 查询各科成绩前三名的学生SELECT a.stu_id,a.course_id,a.score
FROM score a
LEFTJOIN score b ON a.course_id = b.course_id
AND a.score <= b.score
GROUPBY a.stu_id,a.course_id,a.score
HAVINGCOUNT( b.stu_id )<=3ORDERBY a.course_id,a.score DESC;SELECT S1.course_id,s1.stu_id,s1.score FROM score s1
WHERE(SELECTCOUNT(*)FROM score s2
WHERE s2.course_id=s1.course_id AND s2.score > s1.score
)<3ORDERBY s1.course_id,s1.score DESC;select*from(select course_id,stu_id,score,
 row_number()over(partitionby course_id orderby score desc)as`num`from score
) t where t.num <=3;-- rank() over () 排名 跳跃排序 序号不是连续的select*from(select course_id,stu_id,score,
 rank()over(partitionby course_id orderby score desc)as`ranking`from score
) t;-- dense_rank() over () 排名 连续排序select*from(select course_id,stu_id,score,
 dense_rank()over(partitionby course_id orderby score desc)as`ranking`from score
) t;
行列转换 行转列
-- collect_listselect collect_list(emp_job)as`job`from emp;-- collect_setselect collect_set(emp_job)as`job`from emp;-- concat_wsselect concat_ws(',',collect_set(emp_job))as`job`from emp;-- splitselect split(concat_ws(',',collect_set(emp_job)),',')as`job_list`from emp;
行列转换 列转行
  • UDF,即用户定义函数(user-defined function),作用于单行数据,并且产生一个数据行作为输出。

Hive中大多数函数都属于这一类,比如数学函数和字符串函数。UDF函数的输入与输出值是1:1关系。

  • UDTF,即用户定义表生成函数(user-defined table-generating function),

作用于单行数据,并且产生多个数据行。UDTF函数的输入与输出值是1:n的关系。

  • UDAF,用户定义聚集函数(user-defined aggregate function),作用于多行数据,产生一个输出数据行。 Hive中像COUNT、MAX、MIN和SUM这样的函数就是聚集函数。UDAF函数的输入与输出值是n:1的关系。
雇员表 employee.csv
hdfs dfs -mkdir -p /quiz04/employee
hdfs dfs -put /root/employee.csv /quiz04/employee
create external table employee(
    name string comment'姓名',
    sex  string comment'性别',
    birthday string comment'出生年月',
    hiredate string comment'入职日期',
    job string comment'岗位',
    salary intcomment'薪资',
    bonus intcomment'奖金',
    friends array<string>comment'朋友',
    children map<string,int>comment'孩子')row format delimited fieldsterminatedby',' 
 collection items terminatedby'_' 
 map keysterminatedby':'linesterminatedby'\n'
 stored as textfile
 location '/quiz04/employee';
loaddatalocal inpath '/root/employee.csv'intotable employee;
UDTF
-- explodeselect explode(array('java','python','scala','go'))as course;select explode(map('name','李昊哲','gender','1'))as(key,value);-- posexplodeselect posexplode(array('java','python','scala','go'))as(pos,course);-- inlineselect inline(array(named_struct('id',1,'name','李昊哲','gender','1'),
                   named_struct('id',2,'name','李哲','gender','0'),
                   named_struct('id',3,'name','李大宝','gender','1')))as(id,name,gender);-- lateral view   select*from employee lateral view explode(friends) t as friend;select e.name,e.friends,t1.friend from employee e lateral view explode(friends) t1 as`friend`;select*from employee e lateral view explode(children) t1 as`children_name`,`children_friend_count`;select e.name,e.children,t1.children_name,t1.nvl(t2.children_friend_count,0)from employee e
lateral view explode(children) t1 as`children_name`,`children_friend_count`;select e.name,e.friends,e.children,t1.friend,t2.children_name,nvl(t2.children_friend_count,0)from employee e
lateral view explode(friends) t1 as`friend`
lateral view explode(children) t2 as`children_name`,`children_friend_count`;-- lateral view outer
电影表 movie.txt
hdfs dfs -mkdir -p /quiz04/movie
hdfs dfs -put /root/movie.txt /quiz04/movie
create external table movie(
    name string comment'电影名称',
    category string comment'电影分类')row format delimited fieldsterminatedby'-'linesterminatedby'\n'
 stored as textfile
 location '/quiz04/movie';
loaddatalocal inpath '/root/movie.txt'intotable movie;
UDTF 案例
-- 根据上述电影信息表,统计各分类的电影数量select cate,count(name)as`quantity`from movie
 lateral view explode(split(category,',')) tmp as cate
 groupby cate;
分组和去重
-- 统计岗位数量selectcount(distinct emp_job)from emp;selectcount(*)from(select emp_job from emp groupby emp_job) t;

窗口函数(开窗函数)

能为每行数据划分一个窗口,然后对窗口范围内的数据进行计算,最后将计算结果返回给该行

Function(arg1,..., argn)OVER([PARTITIONBY<...>][ORDERBY<....>][<window_expression>])-- 其中Function(arg1,..., argn) 可以是下面分类中的任意一个-- 聚合函数:比如sum max min avg count等-- 排序函数:比如row_number rank dense_rank等-- 分析函数:比如lead lag first_value last_value等-- OVER [PARTITION BY <...>] 类似于group by 用于指定分组  每个分组你可以把它叫做窗口-- 如果没有PARTITION BY 那么整张表的所有行就是一组-- [ORDER BY <....>]  用于指定每个分组内的数据排序规则 支持ASC、DESC-- [<window_expression>] 用于指定每个窗口中 操作的数据范围 默认是窗口中所有行
hdfs dfs -mkdir /quiz04/order
hdfs dfs -put /root/order.csv /quiz04/order
create external table`order`(
    order_id     string comment'订单id',
    user_id      string comment'用户id',
    user_name    string comment'用户姓名',
    order_date   string comment'下单日期',
    order_amount intcomment'订单金额')row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/quiz04/order';
聚合函数

rows 基于行

range 基于值

函数() over(rows between and 3)

  • unbounded preceding 表示从前面的起点
  • number preceding 往前
  • current row 当前行
  • number following 往后
  • unbounded following 表示到后面的终点
loaddatalocal inpath '/root/order.csv'intotableorder;
-- 统计每个用户截至每次下单的累计下单总额select*,sum(order_amount)over(partitionby user_id orderby order_date rowsbetweenunboundedprecedingandcurrentrow)`sum_order_amount`from`order`-- 统计每个用户截至每次下单的当月累积下单总额select*,sum(order_amount)over(partitionby user_id,substr(order_date,1,7)orderby order_date
            rowsbetweenunboundedprecedingandcurrentrow)`sum_order_amount`from`order`
跨行取值
lead lag
-- 统计每个用户每次下单距离上次下单相隔的天数(首次下单按0天算)select user_id,user_name,order_id,order_date,datediff(order_date,last_order_date)`diff_date`from(select*,
 lag(order_date,1,order_date)over(partitionby user_id orderby order_date)`last_order_date`fromorder`) t
first_value last_value
-- 查询所有下单记录以及每个用户的每个下单记录所在月份的首/末次下单日期select*,
 first_value(order_date)over(partitionby user_id,substr(order_date,1,7)orderby order_date)`first_date`,
 last_value(order_date)over(partitionby user_id,substr(order_date,1,7)orderby order_date
 rowsbetweenunboundedprecedingandunboundedfollowing)`last_date`from`order`

分组排序TopN

-- 为每个用户的所有下单记录按照订单金额进行排名

综合练习

准备数据
用户信息表 user.csv
hdfs dfs -mkdir -p /tmall/user
hdfs dfs -put /root/user.csv /tmall/user
create external table`user`(`user_id`  string COMMENT'用户id',`gender`   string COMMENT'性别',`birthday` string COMMENT'生日')COMMENT'用户信息表'row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/tmall/user';
loaddatalocal inpath '/root/user.csv'intotableuser;
商品信息表 sku.csv
hdfs dfs -mkdir -p /tmall/sku
hdfs dfs -put /root/sku.csv /tmall/sku
create external table sku (`sku_id`      string COMMENT'商品id',`name`        string COMMENT'商品名称',`category_id` string COMMENT'所属分类id',`from_date`   string COMMENT'上架日期',`price`doubleCOMMENT'商品单价')COMMENT'商品信息表'row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/tmall/sku';
loaddatalocal inpath '/root/sku.csv'intotable sku;
商品分类信息表 category.csv
hdfs dfs -mkdir -p /tmall/category
hdfs dfs -put /root/category.csv /tmall/category
create external table category (`category_id`   string COMMENT'商品分类ID',`category_name` string COMMENT'商品分类名称')COMMENT'商品分类信息表'row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/tmall/category';
loaddatalocal inpath '/root/category.csv'intotable category;
订单信息表 order.csv
hdfs dfs -mkdir -p /tmall/order
hdfs dfs -put /root/order.csv /tmall/order
create external table`order`(`order_id`     string COMMENT'订单id',`user_id`      string COMMENT'用户id',`create_date`  string COMMENT'下单日期',`total_amount`decimal(16,2)COMMENT'订单总金额')COMMENT'订单信息表'row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/tmall/order';
loaddatalocal inpath '/root/order.csv'intotableorder;
订单明细表 order_detail.csv
hdfs dfs -mkdir -p /tmall/order_detail
hdfs dfs -put /root/order_detail.csv /tmall/order_detail
create external table order_detail (`order_detail_id` string COMMENT'订单明细id',`order_id`        string COMMENT'订单id',`sku_id`          string COMMENT'商品id',`create_date`     string COMMENT'下单日期',`price`decimal(16,2)COMMENT'下单时的商品单价',`sku_num`intCOMMENT'下单商品件数')COMMENT'订单明细表'row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/tmall/order_detail';
loaddatalocal inpath '/root/order_detail.csv'intotable order_detail;
登录明细表 user_login.csv
hdfs dfs -mkdir -p /tmall/user_login
hdfs dfs -put /root/user_login.csv /tmall/user_login
create external table user_login (`user_id`    string comment'用户id',`ip_address` string comment'ip地址',`login_ts`   string comment'登录时间',`logout_ts`  string comment'登出时间')COMMENT'登录明细表'row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/tmall/user_login';
loaddatalocal inpath '/root/user_login.csv'intotable user_login;
商品价格变更明细 user.csv
hdfs dfs -mkdir -p /tmall/sku_price_modify_detail
hdfs dfs -put /root/sku_price_modify_detail.csv /tmall/sku_price_modify_detail
create external table sku_price_modify_detail (`sku_id`      string comment'商品id',`new_price`decimal(16,2)comment'更改后的价格',`change_date` string comment'变动日期')COMMENT'商品价格变更明细表'row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/tmall/sku_price_modify_detail';
loaddatalocal inpath '/root/sku_price_modify_detail.csv'intotable sku_price_modify_detail;
配送信息表 user.csv
hdfs dfs -mkdir -p /tmall/delivery
hdfs dfs -put /root/delivery.csv /tmall/delivery
create external table delivery (`delivery_id` string comment'配送单id',`order_id`    string comment'订单id',`user_id`     string comment'用户id',`order_date`  string comment'下单日期',`custom_date` string comment'期望配送日期')COMMENT'配送信息表'row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/tmall/delivery';
loaddatalocal inpath '/root/delivery.csv'intotable delivery;
好友关系表 user.csv
hdfs dfs -mkdir -p /tmall/friendship
hdfs dfs -put /root/friendship.csv /tmall/friendship
create external table friendship (`user_id` string comment'用户id',`firend_id` string comment'好友id')COMMENT'好友关系表'row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/tmall/friendship';
loaddatalocal inpath '/root/friendship.csv'intotable friendship;
收藏信息表 favor.csv
hdfs dfs -mkdir -p /tmall/favor
hdfs dfs -put /root/favor.csv /tmall/favor
create external table favor (`user_id`     string comment'用户id',`sku_id`      string comment'商品id',`create_date` string comment'收藏日期')COMMENT'收藏信息表'row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/tmall/favor';
loaddatalocal inpath '/root/favor.csv'intotable favor;
练习题目
-- 查询订单明细表(order_detail)中销量(下单件数)排名第二的商品id,不存在返回null,存在多个排名第二的商品则需要全部返回select t2.sku_id from(select t1.sku_id,dense_rank()over(orderby t1.sum_sku desc) ranking from(select sku_id ,sum(sku_num) sum_sku from order_detail  groupby sku_id) t1
) t2 where t2.ranking =2;-- 查询订单信息表(order)中最少连续3天下单的用户idselect t2.user_id from(select t1.user_id
 ,lag(t1.create_date,1,t1.create_date)over(partitionby t1.user_id orderby t1.create_date) day01
 ,lead(t1.create_date,1,t1.create_date)over(partitionby t1.user_id orderby t1.create_date) day03
 from(select user_id,create_date from`order`groupby user_id, create_date) t1  -- 相同用户在同一天下单视为一条记录)t2 where datediff(day03,day01)=2groupby t2.user_id;-- 从订单明细表(order_detail)统计各品类销售出的商品种类数及累积销量最好的商品select t2.category_id,t2.category_name,t2.sku_id,t2.name,t2.sum_sku_num,
       rank()over(orderby t2.sum_sku_num desc) ranking
from(select
    t1.category_id,t1.category_name,t1.sku_id,t1.name,t1.sum_sku_num,
    rank()over(partitionby t1.category_id orderby t1.sum_sku_num desc) ranking
from(select c.category_id,c.category_name,od.sku_id,s.name ,sum(od.sku_num) sum_sku_num  from order_detail od
    leftjoin sku s on od.sku_id = s.sku_id
    leftjoin category c on s.category_id = c.category_id
    groupby c.category_id, c.category_name, od.sku_id,s.name
) t1) t2 where t2.ranking =1;-- 从订单信息表(order)中统计每个用户截止其每个下单日期的累积消费金额,以及每个用户在其每个下单日期的VIP等级-- 用户vip等级根据累积消费金额计算,计算规则如下:-- 设累积消费总额为X,-- 若0=<X<10000,则vip等级为普通会员-- 若10000<=X<30000,则vip等级为青铜会员-- 若30000<=X<50000,则vip等级为白银会员-- 若50000<=X<80000,则vip为黄金会员-- 若80000<=X<100000,则vip等级为白金会员-- 若X>=100000,则vip等级为钻石会员select t2.user_id,t2.create_date,t2.total_amount_day,casewhen t2.total_amount_month >=100000then'钻石会员'when t2.total_amount_month >=80000then'白金会员'when t2.total_amount_month >=50000then'黄金会员'when t2.total_amount_month >=30000then'白银会员'when t2.total_amount_month >=10000then'青铜会员'when t2.total_amount_month >=0then'黑铁会员'end  vip_level
from(select t1.user_id,t1.create_date,t1.total_amount_day,sum(t1.total_amount_day)over(partitionby t1.user_id orderby t1.create_date) total_amount_month
from(select user_id,create_date,sum(total_amount) total_amount_day  from`order`groupby user_id,create_date
) t1) t2;-- 从订单信息表(order)中查询首次下单后第二天仍然下单的用户占所有下单用户的比例,结果保留一位小数,使用百分数显示select concat(round(t4.count_order_user /(selectcount(*)from`user`)*100,1),'%') order_user_percent from(select size(collect_set(t3.user_id)) count_order_user from(select t2.user_id,t2.create_date,t2.next_day from(select t1.user_id,t1.create_date,
       lead(t1.create_date,1,t1.create_date)over(partitionby t1.user_id orderby t1.create_date) next_day
from(select user_id,create_date from`order`groupby user_id,create_date) t1
) t2 where datediff(t2.next_day,t2.create_date)=1) t3) t4;-- 从订单明细表(order_detail)统计每个商品销售首年的年份、销售数量和销售总额selectdistinct t2.sku_id ,t2.first_create_date,sum(sku_num)over(partitionby sku_id) sum_sku_num,sum(price * sku_num)over(partitionby sku_id) total_amount
from(select t1.sku_id ,t1.first_create_date,t1.price,t1.sku_num
from(select sku_id,create_date,price,sku_num,
       first_value(create_date)over(partitionby sku_id orderby create_date) first_create_date
from order_detail) t1
whereyear(t1.create_date)=year(t1.first_create_date)) t2;-- 从订单明细表(order_detail)中筛选去年总销量小于100的商品及其销量,设今天的日期是2022-01-10,不考虑上架时间小于一个月的商品select t1.sku_id,t2.name,t1.total_sku_num
from(select sku_id,sum(sku_num) total_sku_num  from order_detail whereyear(create_date)=year('2022-01-11')-1groupby sku_id having total_sku_num <100) t1
leftjoin(select sku_id,name from sku where datediff('2022-01-10',from_date)>30) t2
on t1.sku_id = t2.sku_id

-- 从用户登录明细表(user_login)中查询每天的新增用户数,-- 若一个用户在某天登录了,且在这一天之前没登录过,则认为该用户为这一天的新增用户select t1.first_date_login,count(*)from(select user_id,min(date_format(login_ts,'yyyy-MM-dd')) first_date_login
from user_login groupby user_id
) t1 groupby t1.first_date_login;-- 从订单明细表(order_detail)中统计出每种商品销售件数最多的日期及当日销量,如果有同一商品多日销量并列的情况,取其中的最小日期select t2.sku_id,t2.create_date,t2.sum_sku_num
from(select t1.sku_id,t1.create_date,t1.sum_sku_num,
       row_number()over(partitionby t1.sku_id orderby t1.sum_sku_num) number
from(select sku_id,create_date,sum(sku_num) sum_sku_num
from order_detail groupby sku_id, create_date) t1) t2
where t2.number =1;-- 从订单明细表(order_detail)中查询累积销售件数高于其所属品类平均数的商品select t3.sku_id,t3.name,t3.category_id,t3.sum_sku_num,t3.avg_cate_num from(select t1.sku_id,t2.name,t2.category_id,t1.sum_sku_num,avg(sum_sku_num)over(partitionby category_id) avg_cate_num
from(select sku_id,sum(sku_num) sum_sku_num from order_detail groupby sku_id) t1
leftjoin(select sku_id,name,category_id from sku)t2 on t1.sku_id = t2.sku_id) t3
where t3.sum_sku_num > t3.avg_cate_num;-- 从用户登录明细表(user_login)和订单信息表(order)中-- 查询每个用户的注册日期(首次登录日期)、总登录次数以及其在2021年的登录次数、订单数和订单总额select t1.user_id,t1.first_login_date,t2.total_login,t3.count_order,t3.total_amount from(select user_id,min(login_ts) first_login_date from user_login groupby user_id) t1
leftjoin(select user_id,count(login_ts) total_login from user_login groupby user_id) t2
    on t1.user_id = t2.user_id
leftjoin(select user_id,count(*) count_order,sum(total_amount) total_amount from`order`whereyear(create_date)=2021groupby user_id) t3
 on t2.user_id = t3.user_id;-- 从商品价格修改明细表(sku_price_modify_detail)中查询2021-10-01的全部商品的价格,假设所有商品初始价格默认都是99select*from sku_price_modify_detail where change_date ='2021-10-01';-- 订单配送中,如果期望配送日期和下单日期相同,称为即时订单,如果期望配送日期和下单日期不同,称为计划订单。-- 从配送信息表(delivery)中求出每个用户的首单(用户的第一个订单)中即时订单的比例,保留两位小数,以小数形式显示selectround(sum(`if`(custom_date = order_date,1,0))/count(*),2)percentfrom(select*,row_number()over(partitionby user_id orderby order_date) num from delivery) t1
where num =1;-- 现需要请向所有用户推荐其朋友收藏但是用户自己未收藏的商品,-- 从好友关系表(friendship)和收藏表(favor)中查询出应向哪位用户推荐哪些商品select t1.user_id,collect_set(firend_favor.sku_id)from(select user_id,friend_id from friendship
unionselect friend_id,user_id from friendship
) t1 leftjoin favor firend_favor on t1.friend_id = firend_favor.user_id
leftjoin favor my_favor on t1.user_id = firend_favor.user_id
and firend_favor.sku_id = my_favor.sku_id
where my_favor.sku_id isnullgroupby t1.user_id

-- 从登录明细表(user_login)中查询出,所有用户的连续登录两天及以上的日期区间,以登录时间(login_ts)为准select t3.user_id,min(pre_login_date) start_date,max(login_date) end_date from(select*from(select user_id,login_date,
       lag(login_date,1,login_date)over(partitionby user_id orderby login_date) pre_login_date
from(select user_id,date_format(login_ts,'yyyy-MM-dd') login_date
 from user_login groupby user_id,date_format(login_ts,'yyyy-MM-dd')) t1
) t2 where datediff(login_date,pre_login_date)=1) t3 groupby t3.user_id;-- 从订单信息表(order)和用户信息表(user)中,-- 分别统计每天男性和女性用户的订单总金额,如果当天男性或者女性没有购物,则统计结果为0select o.create_date,sum(`if`(gender ='男',o.total_amount,0)) male_total_amount,sum(`if`(gender ='女',o.total_amount,0)) female_total_amount
from`order` o
leftjoin`user` u on o.user_id = u.user_id
groupby o.create_date;-- 查询截止每天的最近3天内的订单金额总和以及订单金额日平均值,保留两位小数,四舍五入select t1.create_date,round(sum(t1.total_amount)over(orderby t1.create_date rowsbetween2precedingandcurrentrow),2) total_3d,round(avg(t1.total_amount)over(orderby t1.create_date rowsbetween2precedingandcurrentrow),2) avg_3d
from(select create_date,sum(total_amount) total_amount from`order`groupby create_date) t1;-- 从订单明细表(order_detail)中查询出所有购买过商品1和商品2,但是没有购买过商品3的用户select o.user_id,collect_set(od.sku_id) sku_ids from order_detail od leftjoin`order` o
    on od.order_id = o.order_id
    groupby o.user_id
    having array_contains(sku_ids,'1')and array_contains(sku_ids,'2')and!array_contains(sku_ids,'3');select t1.user_id from(select o.user_id,collect_set(od.sku_id) sku_ids from order_detail od leftjoin`order` o
    on od.order_id = o.order_id
    groupby o.user_id) t1
    where array_contains(sku_ids,'1')and array_contains(sku_ids,'2')and!array_contains(sku_ids,'3')-- 从订单明细表(order_detail)中统计每天商品1和商品2销量(件数)的差值(商品1销量-商品2销量)select create_date,(sum(`if`(sku_id ='1',sku_num,0))-sum(`if`(sku_id ='2',sku_num,0))) sku_num_diff
    from order_detail groupby create_date

-- 从订单信息表(order)中查询出每个用户的最近三笔订单select*from(select*,row_number()over(partitionby user_id orderby create_date desc) ranking from`order`) t1
where ranking <4;-- 从登录明细表(user_login)中查询每个用户两个登录日期(以login_ts为准)之间的最大的空档期。-- 统计最大空档期时,用户最后一次登录至今的空档也要考虑在内,假设今天为2021-10-10select t2.user_id,max(datediff(t2.next_login_date,t2.login_date)) max_gap_period from(select t1.user_id,t1.login_date,
       lead(t1.login_date,1,'2021-10-10')over(partitionby t1.user_id orderby t1.login_date) next_login_date
from(select user_id,date_format(login_ts,'yyyy-MM-dd') login_date from user_login) t1) t2
groupby t2.user_id

-- 从登录明细表(user_login)用户最后一次登录至今的空档期限,-- 分级推荐-- 一年以上 A级-- 半年以上 B级-- 3到6个月 C级-- 1到3个月 D级-- 一周以上 E级-- 一周以下 F级select t1.user_id,gap_period,casewhen gap_period >365then'A'when gap_period >182then'B'when gap_period >91then'C'when gap_period >30then'D'when gap_period >7then'E'else'F'endlevelfrom(select user_id,datediff(date_sub(`current_date`(),500),date_format(max(login_ts),'yyyy-MM-dd')) gap_period
from user_login groupby user_id) t1;-- 从登录明细表(user_login)中查询在相同时刻,多地登陆(ip_address不同)的用户select user_id, date_format(login_ts,'yyyy-MM-dd') login_date from user_login
 groupby user_id, date_format(login_ts,'yyyy-MM-dd')having size(collect_set(ip_address))>1;-- 商家要求每个商品每个月需要售卖出一定的销售总额-- 假设1号商品销售总额大于21000,2号商品销售总额大于10000,其余商品没有要求-- 写出SQL从订单详情表中(order_detail)查询连续两个月销售总额大于等于任务总额的商品select t6.sku_id,date_month,date_amount from(select t4.sku_id,t5.create_month
from(select t3.sku_id,t3.amount_map from(select t2.sku_id,collect_list(map(t2.ymd,t2.total_amount)) amount_map
     from(select t1.sku_id,t1.ymd,t1.total_amount
        from(select sku_id,date_format(create_date,'yyyy-MM') ymd,sum(price * sku_num) total_amount
                from order_detail where sku_id in('1','2')groupby sku_id ,date_format(create_date,'yyyy-MM')having(sku_id ='1'and total_amount >21000)or(sku_id ='2'and total_amount >10000)) t1
        )
    t2 groupby t2.sku_id)
t3 where size(t3.amount_map)>1) t4
lateral view explode(t4.amount_map) t5 as create_month) t6
lateral view explode(t6.create_month) t5 as date_month,date_amount;-- 从订单详情表中(order_detail)对销售件数对商品进行分类,-- 0-5000为冷门商品,5001-19999位一般商品,20000往上为热门商品,并求出不同类别商品的数量select t2.category,count(*) total
from(select t1.sku_id,casewhen t1.total_num between0and5000then'冷门商品'when t1.total_num between5001and19999then'一般商品'else'热门商品'end category
      from(select sku_id,sum(sku_num) total_num from order_detail groupby sku_id) t1) t2
groupby t2.category;-- 从订单详情表中(order_detail)和商品(sku)中查询各个品类销售数量前三的商品。select t2.category_id,t2.sku_id from(select sku.category_id,t1.sku_id,
       rank()over(partitionby sku.category_id orderby t1.total_sku_num desc) ranking
    from(select sku_id,sum(sku_num)as total_sku_num from order_detail groupby sku_id) t1
    leftjoin sku on t1.sku_id = sku.sku_id) t2 where t2.ranking <4;-- 从订单详情表(order_detail)中找出销售额连续3天超过100的商品select t3.sku_id,t3.create_date,t3.amount from(select t2.sku_id,t2.create_date,t2.amount,count(*)over(partitionby t2.sku_id,t2.reference) count_reference
    from(select t1.sku_id,t1.create_date,t1.amount,
           date_sub(t1.create_date,row_number()over(partitionby t1.sku_id orderby t1.create_date)) reference
        from(select sku_id ,create_date,sum(price * sku_num) amount from order_detail
        groupby sku_id ,create_date having  amount >100) t1
    ) t2
) t3 where t3.count_reference >2orderby  t3.sku_id,t3.create_date;-- 从用户登录明细表(user_login_detail)中首次登录算作当天新增,第二天也登录了算作一日留存-- 新增用户数量 第二日留存数量 第二日登录的留存率select*,round(t2.count_next_day_login / t2.count_register,2) retention_rate from(select t1.first_login_date,count(t1.user_id) count_register,count(ul.user_id) count_next_day_login from(select user_id,date_format(min(login_ts),'yyyy-MM-dd') first_login_date from user_login groupby user_id) t1
leftjoin user_login ul on t1.user_id = ul.user_id
and datediff(date_format(login_ts,'yyyy-MM-dd'),t1.first_login_date)=1groupby t1.first_login_date) t2;-- 从订单详情表(order_detail)中,求出商品连续售卖的时间区间select t1.sku_id,min(t1.create_date) start_date,max(t1.create_date) end_date from(select sku_id,create_date,date_sub(create_date,row_number()over(partitionby sku_id orderby create_date)) reference
from order_detail groupby sku_id,create_date) t1
groupby t1.sku_id,t1.reference;-- 分别从登陆明细表(user_login)和配送信息表(delivery)中每天用户登录时间和下单时间统计登陆次数和交易次数select t1.user_id, t1.login_date, t1.count_login, nvl(count_consumption,0) count_consumption
from(select user_id, date_format(login_ts,'yyyy-MM-dd') login_date,count(*) count_login
      from user_login
      groupby user_id, date_format(login_ts,'yyyy-MM-dd')) t1
         leftjoin(select user_id, create_date date_consumption,count(*) count_consumption
      from`order`groupby user_id, create_date) t2
     on t1.user_id = t2.user_id and t1.login_date = t2.date_consumption;-- 从订单明细表(order_detail)中列出每个商品每个年度的购买总额select sku_id,date_format(create_date,'yyyy') every_year,sum(price * sku_num) total_amount
from order_detail groupby sku_id,date_format(create_date,'yyyy');-- 从订单详情表(order_detail)中查询2021年9月27号-2021年10月3号这一周所有商品每天销售情况select sku_id,sum(`if`(`dayofweek`(create_date)-1=1,sku_num,0)) Monday,sum(`if`(`dayofweek`(create_date)-1=2,sku_num,0)) Tuesday,sum(`if`(`dayofweek`(create_date)-1=3,sku_num,0)) Wednesday,sum(`if`(`dayofweek`(create_date)-1=4,sku_num,0)) Thursday,sum(`if`(`dayofweek`(create_date)-1=5,sku_num,0)) Friday,sum(`if`(`dayofweek`(create_date)-1=6,sku_num,0)) Saturday,sum(`if`(`dayofweek`(create_date)-1=0,sku_num,0)) Sunday
from order_detail where create_date between'2021-09-27'and'2021-10-03'groupby sku_id;-- 从商品价格变更明细表(sku_price_modify_detail),得到最近一次价格的涨幅情况,并按照涨幅升序排序select t1.sku_id,t1.change_date,t1.new_price,t1.increase from(select sku_id,change_date,new_price,
       new_price - nvl(lag(new_price)over(partitionby sku_id orderby change_date),new_price) increase,
       rank()over(partitionby sku_id orderby change_date desc) ranking
from sku_price_modify_detail) t1 where ranking =1orderby t1.increase;-- 通过商品信息表(sku)订单信息表(order)订单明细表(order_detail)分析-- 如果有一个用户成功下单两个及两个以上的购买成功的手机订单(购买商品为xiaomi 10,apple 12,xiaomi 13)-- 那么输出这个用户的id及第一次成功购买手机的日期和第二次成功购买手机的日期,以及购买手机成功的次数select t2.user_id,t2.first_date, t2.date_of_second,t2.count_purchases from(select t1.user_id,t1.create_date date_of_second,
       first_value(t1.create_date)over(partitionby t1.user_id orderby t1.create_date) first_date,
       dense_rank()over(partitionby t1.user_id orderby t1.order_id) ranking,count(distinct t1.order_id)over(partitionby t1.user_id) count_purchases
    from(select o.user_id,o.create_date,o.order_id,s.name
        from`order` o
        leftjoin order_detail od on`o`.order_id = od.order_id
        leftjoin sku s on od.sku_id = s.sku_id
    )t1 where t1.name in('xiaomi 10','apple 12','xiaomi 13')) t2 where t2.ranking =2;-- 从订单明细表(order_detail)中,求出同一个商品在2020年和2021年中同一个月的售卖情况对比select nvl(t2020.sku_id,t2021.sku_id) sku_id,`if`(month(t2020.m)-month(t2021.m)>0,month(t2021.m),month(t2020.m)) m,
       nvl(t2020.sku_sum,0) sku_num_2020,
       nvl(t2021.sku_sum,0) sku_num_2021
from(select sku_id, concat(date_format(create_date,'yyyy-MM'),'-01') m,sum(sku_num) sku_sum
    from order_detail
    whereyear(create_date)=2020groupby sku_id,date_format(create_date,'yyyy-MM')) t2020
fulljoin(select sku_id, concat(date_format(create_date,'yyyy-MM'),'-01') m,sum(sku_num) sku_sum
    from order_detail
    whereyear(create_date)=2021groupby sku_id,date_format(create_date,'yyyy-MM')) t2021
where t2020.sku_id = t2021.sku_id;-- 从订单明细表(order_detail)和收藏信息表(favor)统计2021国庆期间,每个商品总收藏量和购买量select nvl(o.sku_id,f.sku_id) sku_id,sku_num,fav from(select sku_id,sum(sku_num) sku_num from order_detail
    where create_date between'2021-10-01'and'2021-10-07'groupby sku_id) o
fulljoin(select sku_id,count(*) fav from favor where create_date <'2021-10-8'groupby sku_id) f
on f.sku_id = o.sku_id

-- 假设今天是数据中所有日期的最大值,从用户登录明细表中的用户登录时间给各用户分级,求出各等级用户的人数-- 用户等级:-- 忠实用户:近7天活跃且非新用户-- 新晋用户:近7天新增-- 沉睡用户:近7天未活跃但是在7天前活跃-- 流失用户:近30天未活跃但是在30天前活跃select t.levellevel,count(*) count_user from(select ul.user_id,casewhen datediff(today, date_format(max(login_ts),'yyyy-MM-dd'))>=30then'流失用户'when datediff(today, date_format(max(login_ts),'yyyy-MM-dd'))>=7and
                datediff(today, date_format(max(login_ts),'yyyy-MM-dd'))<30then'沉睡用户'when datediff(today, date_format(min(login_ts),'yyyy-MM-dd'))<7then'新晋用户'when datediff(today, date_format(min(login_ts),'yyyy-MM-dd'))>7and
                datediff(today, date_format(max(login_ts),'yyyy-MM-dd'))<7then'忠实用户'endlevelfrom user_login ul
join(select date_format(max(login_ts),'yyyy-MM-dd') today from user_login) ref
groupby ul.user_id,today
) t groupby t.level;-- 用户每天签到可以领1金币,并可以累计签到天数,连续签到的第3、7天分别可以额外领2和6金币。-- 每连续签到7天重新累积签到天数。从用户登录明细表中求出每个用户金币总数,并按照金币总数倒序排序select t3.user_id,sum(t3.gold) total_gold from(select t2.user_id,max(t2.count_login)+sum(`if`(t2.count_login %3=0,2,0))+sum(`if`(t2.count_login %7=0,6,0)) gold
    from(select t1.user_id,t1.login_date,
           date_sub(login_date,t1.num) ref,count(*)over(partitionby user_id,date_sub(login_date,t1.num)orderby t1.login_date) count_login
        from(select user_id,date_format(login_ts,'yyyy-MM-dd') login_date,
               row_number()over(partitionby user_id orderby date_format(login_ts,'yyyy-MM-dd')) num
            from user_login groupby user_id,date_format(login_ts,'yyyy-MM-dd')) t1
    ) t2 groupby t2.user_id,ref
) t3 groupby t3.user_id orderby total_gold desc;-- 动销率定义为品类商品中一段时间内有销量的商品占当前已上架总商品数的比例(有销量的商品/已上架总商品数)。-- 滞销率定义为品类商品中一段时间内没有销量的商品占当前已上架总商品数的比例。(没有销量的商品 / 已上架总商品数)。-- 只要当天任一店铺有任何商品的销量就输出该天的结果-- 从订单明细表(order_detail)和商品信息表(sku)表中求出国庆7天每天每个品类的商品的动销率和滞销率select t4.category_id,
       t3.day01 / count_shelf day01_mr,(count_shelf - t3.day01)/ count_shelf day01_ar,
        t3.day02 / count_shelf day02_mr,(count_shelf - t3.day02)/ count_shelf day02_ar,
        t3.day03 / count_shelf day03_mr,(count_shelf - t3.day03)/ count_shelf day03_ar,
        t3.day04 / count_shelf day04_mr,(count_shelf - t3.day04)/ count_shelf day04_ar,
        t3.day05 / count_shelf day05_mr,(count_shelf - t3.day05)/ count_shelf day05_ar,
        t3.day06 / count_shelf day06_mr,(count_shelf - t3.day06)/ count_shelf day06_ar,
        t3.day07 / count_shelf day07_mr,(count_shelf - t3.day07)/ count_shelf day07_ar
from(select t2.category_id,sum(`if`(t2.create_date ='2021-10-01',1,0)) day01,sum(`if`(t2.create_date ='2021-10-02',1,0)) day02,sum(`if`(t2.create_date ='2021-10-03',1,0)) day03,sum(`if`(t2.create_date ='2021-10-04',1,0)) day04,sum(`if`(t2.create_date ='2021-10-05',1,0)) day05,sum(`if`(t2.create_date ='2021-10-06',1,0)) day06,sum(`if`(t2.create_date ='2021-10-07',1,0)) day07
       from(selectdistinct t1.category_id,t1.create_date,t1.name from(select s.category_id,od.create_date,s.name
            from order_detail od join sku s on od.sku_id = s.sku_id
        ) t1 where t1.create_date between'2021-10-01'and'2021-10-07') t2 groupby t2.category_id
) t3
join(select category_id,count(*) count_shelf from sku groupby category_id) t4
on t3.category_id = t4.category_id;-- 根据用户登录明细表(user_login),求出平台同时在线最多的人数selectmax(sum_l_time)from(selectsum(flag)over(orderby t1.l_time) sum_l_time
    from(select
          login_ts l_time,1 flag
        from
          user_login
        unionselect
          logout_ts l_time,-1 flag
        from
          user_login
    )t1 
)t2;

分区表

模拟数据

身份证前六位

region_code.txt

110101,110102,110103,110104,110105,110106,110107,110108,110109,110111,110112,110113,110114,110224,110226,110227,110228,110229,120101,120102,120103,120104,120105,120106,120107,120108,120109,120110,120111,120112,120113,120114,120221,120223,120224,120225,130101,130102,130103,130104,130105,130106,130107,130121,130123,130124,130125,130126,130127,130128,130129,130130,130131,130132,130133,130181,130182,130183,130184,130185,130201,130202,130203,130204,130205,130206,130221,130223,130224,130225,130227,130229,130230,130281,130282,130283,130301,130302,130303,130304,130321,130322,130323,130324,130401,130402,130403,130404,130406,130421,130423,130424,130425,130426,130427,130428,130429,130430,130431,130432,130433,130434,130435,130481,130501,130502,130503,130521,130522,130523,130524,130525,130526,130527,130528,130529,130530,130531,130532,130533,130534,130535,130581,130582,130601,130602,130603,130604,130621,130622,130623,130624,130625,130626,130627,130628,130629,130630,130631,130632,130633,130634,130635,130636,130637,130638,130681,130682,130683,130684,130701,130702,130703,130705,130706,130721,130722,130723,130724,130725,130726,130727,130728,130729,130730,130731,130732,130733,130801,130802,130803,130804,130821,130822,130823,130824,130825,130826,130827,130828,130901,130902,130903,130921,130922,130923,130924,130925,130926,130927,130928,130929,130930,130981,130982,130983,130984,131001,131002,131003,131022,131023,131024,131025,131026,131028,131081,131082,131101,131102,131121,131122,131123,131124,131125,131126,131127,131128,131181,131182,140101,140105,140106,140107,140108,140109,140110,140121,140122,140123,140181,140201,140202,140203,140211,140212,140221,140222,140223,140224,140225,140226,140227,140301,140302,140303,140311,140321,140322,140401,140402,140411,140421,140423,140424,140425,140426,140427,140428,140429,140430,140431,140481,140501,140502,140521,140522,140524,140525,140581,140601,140602,140603,140621,140622,140623,140624,140701,140702,140721,140722,140723,140724,140725,140726,140727,140728,140729,140781,140801,140802,140821,140822,140823,140824,140825,140826,140827,140828,140829,140830,140881,140882,140901,140902,140921,140922,140923,140924,140925,140926,140927,140928,140929,140930,140931,140932,140981,141001,141002,141021,141022,141023,141024,141025,141026,141027,141028,141029,141030,141031,141032,141033,141034,141081,141082,142301,142302,142303,142322,142323,142325,142326,142327,142328,142329,142330,142332,142333,150101,150102,150103,150104,150105,150121,150122,150123,150124,150125,150201,150202,150203,150204,150205,150206,150207,150221,150222,150223,150301,150302,150303,150304,150401,150402,150403,150404,150421,150422,150423,150424,150425,150426,150428,150429,150430,150501,150502,150521,150522,150523,150524,150525,150526,150581,152101,152102,152103,152104,152105,152106,152122,152123,152127,152128,152129,152130,152131,152201,152202,152221,152222,152223,152224,152501,152502,152522,152523,152524,152525,152526,152527,152528,152529,152530,152531,152601,152602,152624,152625,152626,152627,152629,152630,152631,152632,152634,152701,152722,152723,152724,152725,152726,152727,152728,152801,152822,152823,152824,152825,152826,152827,152921,152922,152923,210101,210102,210103,210104,210105,210106,210111,210112,210113,210114,210122,210123,210124,210181,210201,210202,210203,210204,210211,210212,210213,210224,210281,210282,210283,210301,210302,210303,210304,210311,210321,210323,210381,210401,210402,210403,210404,210411,210421,210422,210423,210501,210502,210503,210504,210505,210521,210522,210601,210602,210603,210604,210624,210681,210682,210701,210702,210703,210711,210726,210727,210781,210782,210801,210802,210803,210804,210811,210881,210882,210901,210902,210903,210904,210905,210911,210921,210922,211001,211002,211003,211004,211005,211011,211021,211081,211101,211102,211103,211121,211122,211201,211202,211204,211221,211223,211224,211281,211282,211301,211302,211303,211321,211322,211324,211381,211382,211401,211402,211403,211404,211421,211422,211481,220101,220102,220103,220104,220105,220106,220112,220122,220181,220182,220183,220201,220202,220203,220204,220211,220221,220281,220282,220283,220284,220301,220302,220303,220322,220323,220381,220382,220401,220402,220403,220421,220422,220501,220502,220503,220521,220523,220524,220581,220582,220601,220602,220621,220622,220623,220625,220681,220701,220702,220721,220722,220723,220724,220801,220802,220821,220822,220881,220882,222401,222402,222403,222404,222405,222406,222424,222426,230101,230102,230103,230104,230105,230106,230107,230108,230121,230123,230124,230125,230126,230127,230128,230129,230181,230182,230183,230184,230201,230202,230203,230204,230205,230206,230207,230208,230221,230223,230224,230225,230227,230229,230230,230231,230281,230301,230302,230303,230304,230305,230306,230307,230321,230381,230382,230401,230402,230403,230404,230405,230406,230407,230421,230422,230501,230502,230503,230505,230506,230521,230522,230523,230524,230601,230602,230603,230604,230605,230606,230621,230622,230623,230624,230701,230702,230703,230704,230705,230706,230707,230708,230709,230710,230711,230712,230713,230714,230715,230716,230722,230781,230801,230802,230803,230804,230805,230811,230822,230826,230828,230833,230881,230882,230901,230902,230903,230904,230921,231001,231002,231003,231004,231005,231024,231025,231081,231083,231084,231085,231101,231102,231121,231123,231124,231181,231182,231201,231202,231221,231222,231223,231224,231225,231226,231281,231282,231283,232721,232722,232723,310101,310103,310104,310105,310106,310107,310108,310109,310110,310112,310113,310114,310115,310116,310117,310118,310225,310226,310230,320101,320102,320103,320104,320105,320106,320107,320111,320112,320113,320114,320115,320122,320123,320124,320125,320201,320202,320203,320204,320205,320206,320211,320281,320282,320301,320302,320303,320304,320305,320311,320321,320322,320323,320324,320381,320382,320401,320402,320404,320405,320411,320481,320482,320483,320501,320502,320503,320504,320505,320506,320507,320581,320582,320583,320584,320585,320601,320602,320611,320621,320623,320681,320682,320683,320684,320701,320703,320704,320705,320706,320721,320722,320723,320724,320801,320802,320803,320804,320811,320826,320829,320830,320831,320901,320902,320921,320922,320923,320924,320925,320928,320981,320982,321001,321002,321003,321011,321023,321081,321084,321088,321101,321102,321111,321121,321181,321182,321183,321201,321202,321203,321281,321282,321283,321284,321301,321302,321321,321322,321323,321324,330101,330102,330103,330104,330105,330106,330108,330122,330127,330181,330182,330183,330184,330185,330201,330203,330204,330205,330206,330211,330225,330226,330227,330281,330282,330283,330301,330302,330303,330304,330322,330324,330326,330327,330328,330329,330381,330382,330401,330402,330411,330421,330424,330481,330482,330483,330501,330521,330522,330523,330601,330602,330621,330624,330681,330682,330683,330701,330702,330703,330723,330726,330727,330781,330782,330783,330784,330801,330802,330821,330822,330824,330825,330881,330901,330902,330903,330921,330922,331001,331002,331003,331004,331021,331022,331023,331024,331081,331082,331101,331102,331121,331122,331123,331124,331125,331126,331127,331181,340101,340102,340103,340104,340111,340121,340122,340123,340201,340202,340203,340204,340207,340221,340222,340223,340301,340302,340303,340304,340311,340321,340322,340323,340401,340402,340403,340404,340405,340406,340421,340501,340502,340503,340504,340505,340521,340601,340602,340603,340604,340621,340701,340702,340703,340711,340721,340801,340802,340803,340811,340822,340823,340824,340825,340826,340827,340828,340881,341001,341002,341003,341004,341021,341022,341023,341024,341101,341102,341103,341122,341124,341125,341126,341181,341182,341201,341202,341203,341204,341221,341222,341225,341226,341282,341301,341302,341321,341322,341323,341324,341401,341402,341421,341422,341423,341424,341501,341502,341503,341521,341522,341523,341524,341525,341601,341602,341621,341622,341623,341701,341702,341721,341722,341723,341801,341802,341821,341822,341823,341824,341825,341881,350101,350102,350103,350104,350105,350111,350121,350122,350123,350124,350125,350128,350181,350182,350201,350202,350203,350204,350205,350206,350211,350212,350301,350302,350303,350321,350322,350401,350402,350403,350421,350423,350424,350425,350426,350427,350428,350429,350430,350481,350501,350502,350503,350504,350505,350521,350524,350525,350526,350527,350581,350582,350583,350601,350602,350603,350622,350623,350624,350625,350626,350627,350628,350629,350681,350701,350702,350721,350722,350723,350724,350725,350781,350782,350783,350784,350801,350802,350821,350822,350823,350824,350825,350881,350901,350902,350921,350922,350923,350924,350925,350926,350981,350982,360101,360102,360103,360104,360105,360111,360121,360122,360123,360124,360201,360202,360203,360222,360281,360301,360302,360313,360321,360322,360323,360401,360402,360403,360421,360423,360424,360425,360426,360427,360428,360429,360430,360481,360501,360502,360521,360601,360602,360622,360681,360701,360702,360721,360722,360723,360724,360725,360726,360727,360728,360729,360730,360731,360732,360733,360734,360735,360781,360782,360801,360802,360803,360821,360822,360823,360824,360825,360826,360827,360828,360829,360830,360881,360901,360902,360921,360922,360923,360924,360925,360926,360981,360982,360983,361001,361002,361021,361022,361023,361024,361025,361026,361027,361028,361029,361030,361101,361102,361121,361122,361123,361124,361125,361126,361127,361128,361129,361130,361181,370101,370102,370103,370104,370105,370112,370123,370124,370125,370126,370181,370201,370202,370203,370205,370211,370212,370213,370214,370281,370282,370283,370284,370285,370301,370302,370303,370304,370305,370306,370321,370322,370323,370401,370402,370403,370404,370405,370406,370481,370501,370502,370503,370521,370522,370523,370601,370602,370611,370612,370613,370634,370681,370682,370683,370684,370685,370686,370687,370701,370702,370703,370704,370705,370724,370725,370781,370782,370783,370784,370785,370786,370801,370802,370811,370826,370827,370828,370829,370830,370831,370832,370881,370882,370883,370901,370902,370903,370921,370923,370982,370983,371001,371002,371081,371082,371083,371101,371102,371121,371122,371201,371202,371203,371301,371302,371311,371312,371321,371322,371323,371324,371325,371326,371327,371328,371329,371401,371402,371421,371422,371423,371424,371425,371426,371427,371428,371481,371482,371501,371502,371521,371522,371523,371524,371525,371526,371581,371601,371603,371621,371622,371623,371624,371625,371626,371701,371702,371721,371722,371723,371724,371725,371726,371727,371728,410101,410102,410103,410104,410105,410106,410108,410122,410181,410182,410183,410184,410185,410201,410202,410203,410204,410205,410211,410221,410222,410223,410224,410225,410301,410302,410303,410304,410305,410306,410307,410322,410323,410324,410325,410326,410327,410328,410329,410381,410401,410402,410403,410404,410411,410421,410422,410423,410425,410481,410482,410501,410502,410503,410504,410511,410522,410523,410526,410527,410581,410601,410602,410603,410611,410621,410622,410701,410702,410703,410704,410711,410721,410724,410725,410726,410727,410728,410781,410782,410801,410802,410803,410804,410811,410821,410822,410823,410825,410881,410882,410883,410901,410902,410922,410923,410926,410927,410928,411001,411002,411023,411024,411025,411081,411082,411101,411102,411121,411122,411123,411201,411202,411221,411222,411224,411281,411282,411301,411302,411303,411321,411322,411323,411324,411325,411326,411327,411328,411329,411330,411381,411401,411402,411403,411421,411422,411423,411424,411425,411426,411481,411501,411502,411503,411521,411522,411523,411524,411525,411526,411527,411528,411601,411602,411621,411622,411623,411624,411625,411626,411627,411628,411681,411701,411702,411721,411722,411723,411724,411725,411726,411727,411728,411729,420101,420102,420103,420104,420105,420106,420107,420111,420112,420113,420114,420115,420116,420117,420201,420202,420203,420204,420205,420222,420281,420301,420302,420303,420321,420322,420323,420324,420325,420381,420501,420502,420503,420504,420505,420521,420525,420526,420527,420528,420529,420581,420582,420583,420601,420602,420606,420621,420624,420625,420626,420682,420683,420684,420701,420702,420703,420704,420801,420802,420821,420822,420881,420901,420902,420921,420922,420923,420981,420982,420984,421001,421002,421003,421022,421023,421024,421081,421083,421087,421101,421102,421121,421122,421123,421124,421125,421126,421127,421181,421182,421201,421202,421221,421222,421223,421224,421281,421301,421302,421381,422801,422802,422822,422823,422825,422826,422827,422828,429004,429005,429006,429021,430101,430102,430103,430104,430105,430111,430121,430122,430124,430181,430201,430202,430203,430204,430211,430221,430223,430224,430225,430281,430301,430302,430304,430321,430381,430382,430401,430402,430403,430404,430411,430412,430421,430422,430423,430424,430426,430481,430482,430501,430502,430503,430511,430521,430522,430523,430524,430525,430527,430528,430529,430581,430601,430602,430603,430611,430621,430623,430624,430626,430681,430682,430701,430702,430703,430721,430722,430723,430724,430725,430726,430781,430801,430802,430811,430821,430822,430901,430902,430903,430921,430922,430923,430981,431001,431002,431003,431021,431022,431023,431024,431025,431026,431027,431028,431081,431101,431102,431103,431121,431122,431123,431124,431125,431126,431127,431128,431129,431201,431202,431221,431222,431223,431224,431225,431226,431227,431228,431229,431230,431281,431301,431302,431321,431322,431381,431382,433101,433122,433123,433124,433125,433126,433127,433130,440101,440102,440103,440104,440105,440106,440107,440111,440112,440113,440114,440183,440184,440201,440202,440203,440204,440221,440222,440224,440229,440232,440233,440281,440282,440301,440303,440304,440305,440306,440307,440308,440401,440402,440421,440501,440506,440507,440508,440509,440510,440523,440582,440583,440601,440602,440603,440681,440682,440683,440684,440701,440703,440704,440781,440782,440783,440784,440785,440801,440802,440803,440804,440811,440823,440825,440881,440882,440883,440901,440902,440923,440981,440982,440983,441201,441202,441203,441223,441224,441225,441226,441283,441284,441301,441302,441322,441323,441324,441381,441401,441402,441421,441422,441423,441424,441426,441427,441481,441501,441502,441521,441523,441581,441601,441602,441621,441622,441623,441624,441625,441701,441702,441721,441723,441781,441801,441802,441821,441823,441825,441826,441827,441881,441882,441901,441902,441903,441904,442001,442002,442003,442004,442005,445101,445102,445121,445122,445201,445202,445221,445222,445224,445281,445301,445302,445321,445322,445323,445381,450101,450102,450103,450104,450105,450106,450111,450121,450122,450201,450202,450203,450204,450205,450211,450221,450222,450301,450302,450303,450304,450305,450311,450321,450322,450323,450324,450325,450326,450327,450328,450329,450330,450331,450332,450401,450403,450404,450411,450421,450422,450423,450481,450501,450502,450503,450512,450521,450601,450602,450603,450621,450681,450701,450702,450703,450721,450722,450801,450802,450803,450821,450881,450901,450902,450921,450922,450923,450924,450981,452101,452122,452123,452124,452126,452127,452128,452129,452130,452131,452132,452133,452201,452223,452224,452225,452226,452227,452228,452229,452230,452231,452402,452424,452427,452428,452601,452622,452623,452624,452625,452626,452627,452628,452629,452630,452631,452632,452701,452702,452723,452724,452725,452726,452727,452728,452729,452730,452731,460101,460102,460103,460104,460105,460106,460107,460125,460126,460127,460128,460130,460131,460133,460134,460135,460136,460137,460138,460139,460201,460202,460203,460204,460301,500101,500102,500103,500104,500105,500106,500107,500108,500109,500110,500111,500112,500113,500114,500221,500222,500223,500224,500225,500226,500227,500228,500229,500230,500231,500232,500233,500234,500235,500236,500237,500238,500240,500241,500242,500243,500381,500382,500383,500384,510101,510103,510104,510105,510106,510107,510108,510112,510113,510121,510122,510123,510124,510125,510129,510131,510132,510181,510182,510183,510184,510301,510302,510303,510304,510311,510321,510322,510401,510402,510403,510411,510421,510422,510501,510502,510503,510504,510521,510522,510524,510525,510601,510603,510623,510626,510681,510682,510683,510701,510703,510704,510710,510722,510723,510724,510725,510726,510727,510781,510801,510802,510811,510812,510821,510822,510823,510824,510901,510902,510921,510922,510923,511001,511002,511011,511024,511025,511028,511101,511102,511111,511112,511113,511123,511124,511126,511129,511132,511133,511181,511301,511302,511303,511304,511321,511322,511323,511324,511325,511381,511401,511402,511421,511422,511423,511424,511425,511501,511502,511521,511522,511523,511524,511525,511526,511527,511528,511529,511601,511602,511621,511622,511623,511681,511701,511702,511721,511722,511723,511724,511725,511781,511801,511802,511821,511822,511823,511824,511825,511826,511827,511901,511902,511921,511922,511923,512001,512002,512021,512022,512081,513221,513222,513223,513224,513225,513226,513227,513228,513229,513230,513231,513232,513233,513321,513322,513323,513324,513325,513326,513327,513328,513329,513330,513331,513332,513333,513334,513335,513336,513337,513338,513401,513422,513423,513424,513425,513426,513427,513428,513429,513430,513431,513432,513433,513434,513435,513436,513437,520101,520102,520103,520111,520112,520113,520114,520121,520122,520123,520181,520201,520203,520221,520222,520301,520302,520321,520322,520323,520324,520325,520326,520327,520328,520329,520330,520381,520382,520401,520402,520421,520422,520423,520424,520425,522201,522222,522223,522224,522225,522226,522227,522228,522229,522230,522301,522322,522323,522324,522325,522326,522327,522328,522401,522422,522423,522424,522425,522426,522427,522428,522601,522622,522623,522624,522625,522626,522627,522628,522629,522630,522631,522632,522633,522634,522635,522636,522701,522702,522722,522723,522725,522726,522727,522728,522729,522730,522731,522732,530101,530102,530103,530111,530112,530113,530121,530122,530124,530125,530126,530127,530128,530129,530181,530301,530302,530321,530322,530323,530324,530325,530326,530328,530381,530401,530402,530421,530422,530423,530424,530425,530426,530427,530428,530501,530502,530521,530522,530523,530524,532101,532122,532123,532124,532125,532126,532127,532128,532129,532130,532131,532301,532322,532323,532324,532325,532326,532327,532328,532329,532331,532501,532502,532522,532523,532524,532525,532526,532527,532528,532529,532530,532531,532532,532621,532622,532623,532624,532625,532626,532627,532628,532701,532722,532723,532724,532725,532726,532727,532728,532729,532730,532801,532822,532823,532901,532922,532923,532924,532925,532926,532927,532928,532929,532930,532931,532932,533102,533103,533122,533123,533124,533221,533222,533223,533224,533321,533323,533324,533325,533421,533422,533423,533521,533522,533523,533524,533525,533526,533527,533528,540101,540102,540121,540122,540123,540124,540125,540126,540127,542121,542122,542123,542124,542125,542126,542127,542128,542129,542132,542133,542221,542222,542223,542224,542225,542226,542227,542228,542229,542231,542232,542233,542301,542322,542323,542324,542325,542326,542327,542328,542329,542330,542331,542332,542333,542334,542335,542336,542337,542338,542421,542422,542423,542424,542425,542426,542427,542428,542429,542430,542521,542522,542523,542524,542525,542526,542527,542621,542622,542623,542624,542625,542626,542627,610101,610102,610103,610104,610111,610112,610113,610114,610115,610121,610122,610124,610125,610126,610201,610202,610203,610221,610222,610301,610302,610303,610321,610322,610323,610324,610326,610327,610328,610329,610330,610331,610401,610402,610403,610404,610422,610423,610424,610425,610426,610427,610428,610429,610430,610431,610481,610501,610502,610521,610522,610523,610524,610525,610526,610527,610528,610581,610582,610601,610602,610621,610622,610623,610624,610625,610626,610627,610628,610629,610630,610631,610632,610701,610702,610721,610722,610723,610724,610725,610726,610727,610728,610729,610730,610801,610802,610821,610822,610823,610824,610825,610826,610827,610828,610829,610830,610831,610901,610902,610921,610922,610923,610924,610925,610926,610927,610928,610929,612501,612522,612523,612524,612525,612526,612527,620101,620102,620103,620104,620105,620111,620121,620122,620123,620201,620301,620302,620321,620401,620402,620403,620421,620422,620423,620501,620502,620503,620521,620522,620523,620524,620525,622101,622102,622103,622123,622124,622125,622126,622201,622222,622223,622224,622225,622226,622301,622322,622323,622326,622421,622424,622425,622426,622427,622428,622429,622621,622623,622624,622625,622626,622627,622628,622629,622630,622701,622722,622723,622724,622725,622726,622727,622801,622821,622822,622823,622824,622825,622826,622827,622901,622921,622922,622923,622924,622925,622926,622927,623001,623021,623022,623023,623024,623025,623026,623027,630101,630102,630103,630104,630105,630121,630122,630123,632121,632122,632123,632126,632127,632128,632221,632222,632223,632224,632321,632322,632323,632324,632521,632522,632523,632524,632525,632621,632622,632623,632624,632625,632626,632721,632722,632723,632724,632725,632726,632801,632802,632821,632822,632823,640101,640102,640103,640111,640121,640122,640201,640202,640203,640204,640221,640222,640223,640301,640302,640321,640322,640323,640324,640381,640382,642221,642222,642223,642224,642225,642226,650101,650102,650103,650104,650105,650106,650107,650108,650121,650201,650202,650203,650204,650205,652101,652122,652123,652201,652222,652223,652301,652302,652303,652323,652324,652325,652327,652328,652701,652722,652723,652801,652822,652823,652824,652825,652826,652827,652828,652829,652901,652922,652923,652924,652925,652926,652927,652928,652929,653001,653022,653023,653024,653101,653121,653122,653123,653124,653125,653126,653127,653128,653129,653130,653131,653201,653221,653222,653223,653224,653225,653226,653227,654001,654101,654121,654122,654123,654124,654125,654126,654127,654128,654201,654202,654221,654223,654224,654225,654226,654301,654321,654322,654323,654324,654325,654326,659001,710101,710102,710103,810101,810102,810103,910101,910102,910103
pom.xml
<projectxmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.lihaoze</groupId><artifactId>hadoop</artifactId><version>1.0.0</version><packaging>jar</packaging><name>hadoop</name><url>http://maven.apache.org</url><properties><jdk.version>1.8</jdk.version><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding><maven.test.failure.ignore>true</maven.test.failure.ignore><maven.test.skip>true</maven.test.skip></properties><dependencies><!-- junit-jupiter-api --><dependency><groupId>org.junit.jupiter</groupId><artifactId>junit-jupiter-api</artifactId><version>5.9.2</version><scope>test</scope></dependency><!-- junit-jupiter-engine --><dependency><groupId>org.junit.jupiter</groupId><artifactId>junit-jupiter-engine</artifactId><version>5.9.2</version><scope>test</scope></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.26</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>2.20.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.3.5</version></dependency><dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>31.1-jre</version></dependency><!-- commons-pool2 --><dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId><version>2.11.1</version></dependency><dependency><groupId>com.janeluo</groupId><artifactId>ikanalyzer</artifactId><version>2012_u6</version></dependency><dependency><groupId>com.github.binarywang</groupId><artifactId>java-testdata-generator</artifactId><version>1.1.2</version></dependency><dependency><groupId>commons-io</groupId><artifactId>commons-io</artifactId><version>2.11.0</version></dependency></dependencies><build><finalName>${project.artifactId}</finalName><!--<outputDirectory>../package</outputDirectory>--><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><version>3.11.0</version><configuration><!-- 设置编译字符编码 --><encoding>UTF-8</encoding><!-- 设置编译jdk版本 --><source>${jdk.version}</source><target>${jdk.version}</target></configuration></plugin><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-clean-plugin</artifactId><version>3.2.0</version></plugin><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-resources-plugin</artifactId><version>3.3.1</version></plugin><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-war-plugin</artifactId><version>3.3.2</version></plugin><!-- 编译级别 --><!-- 打包的时候跳过测试junit begin --><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-surefire-plugin</artifactId><version>2.22.2</version><configuration><skip>true</skip></configuration></plugin></plugins></build></project>
工具类
packagecom.lihaozhe.mock;importcn.binarywang.tools.generator.ChineseIDCardNumberGenerator;importcn.binarywang.tools.generator.ChineseMobileNumberGenerator;importcn.binarywang.tools.generator.ChineseNameGenerator;importcn.binarywang.tools.generator.base.GenericGenerator;importorg.apache.commons.io.FileUtils;importorg.junit.jupiter.api.Test;importjava.io.File;importjava.io.IOException;importjava.util.ArrayList;importjava.util.Arrays;importjava.util.List;importjava.util.ListIterator;/**
 * @author 李昊哲
 * @version 1.0.0
 * @create 2023/4/25 20:18
 */publicclassMockTest{privatestaticList<String> provinceCodes =newArrayList<>();static{
        provinceCodes.add("11");
        provinceCodes.add("12");
        provinceCodes.add("13");
        provinceCodes.add("14");
        provinceCodes.add("15");
        provinceCodes.add("21");
        provinceCodes.add("22");
        provinceCodes.add("23");
        provinceCodes.add("31");
        provinceCodes.add("32");
        provinceCodes.add("33");
        provinceCodes.add("34");
        provinceCodes.add("35");
        provinceCodes.add("36");
        provinceCodes.add("37");
        provinceCodes.add("41");
        provinceCodes.add("42");
        provinceCodes.add("43");
        provinceCodes.add("44");
        provinceCodes.add("45");
        provinceCodes.add("46");
        provinceCodes.add("51");
        provinceCodes.add("52");
        provinceCodes.add("53");
        provinceCodes.add("54");
        provinceCodes.add("61");
        provinceCodes.add("62");
        provinceCodes.add("63");
        provinceCodes.add("64");
        provinceCodes.add("65");
        provinceCodes.add("71");
        provinceCodes.add("81");
        provinceCodes.add("91");}@Testpublicvoidtest01()throwsIOException{String suffix =".csv";String[] rcs =FileUtils.readFileToString(newFile("region_code.txt"),"UTF-8").split(",");List<String> codes =Arrays.asList(rcs);ChineseNameGenerator nameGenerator =ChineseNameGenerator.getInstance();GenericGenerator idCardGenerator =ChineseIDCardNumberGenerator.getInstance();ChineseMobileNumberGenerator mobileNumberGenerator =ChineseMobileNumberGenerator.getInstance();StringBuilder content =newStringBuilder();for(long i =0; i <10000000; i++){String idCard = idCardGenerator.generate();if(idCard.startsWith("82")){continue;}if(codes.contains(idCard.substring(0,6))){
                content.append(idCard).append(",");
                content.append(nameGenerator.generate()).append(",");
                content.append(mobileNumberGenerator.generate()).append("\n");File file =newFile(idCard.substring(0,2)+ suffix);FileUtils.write(file, content.toString(),"UTF-8",true);System.out.println(content.toString());
                content.delete(0, content.length());}}System.out.println("success");}@Testpublicvoidtest02()throwsIOException{String suffix =".csv";List<String> list =FileUtils.readLines(newFile("22.csv"),"UTF-8");File file;for(String content : list){String city_code = content.substring(0,4);
            file =newFile(city_code + suffix);FileUtils.write(file,content +"\n","UTF-8",true);System.out.println(content);}System.out.println("success");}}

创建数据库

hdfs dfs -mkdir -p /partition
createdatabase pt location '/partition';

内部分区表

创建内部分区表
createtable partition_1(
    id_card string,
    real_name string,
    mobile string
)partitioned by(province_code string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile;
导入数据
loaddatalocal inpath '/root/region/11.csv'intotable partition_1  partition(province_code='11');loaddatalocal inpath '/root/region/12.csv'intotable partition_1  partition(province_code='12');loaddatalocal inpath '/root/region/13.csv'intotable partition_1  partition(province_code='13');loaddatalocal inpath '/root/region/14.csv'intotable partition_1  partition(province_code='14');loaddatalocal inpath '/root/region/15.csv'intotable partition_1  partition(province_code='15');loaddatalocal inpath '/root/region/21.csv'intotable partition_1  partition(province_code='21');loaddatalocal inpath '/root/region/22.csv'intotable partition_1  partition(province_code='22');loaddatalocal inpath '/root/region/23.csv'intotable partition_1  partition(province_code='23');loaddatalocal inpath '/root/region/31.csv'intotable partition_1  partition(province_code='31');loaddatalocal inpath '/root/region/32.csv'intotable partition_1  partition(province_code='32');loaddatalocal inpath '/root/region/33.csv'intotable partition_1  partition(province_code='33');loaddatalocal inpath '/root/region/34.csv'intotable partition_1  partition(province_code='34');loaddatalocal inpath '/root/region/35.csv'intotable partition_1  partition(province_code='35');loaddatalocal inpath '/root/region/36.csv'intotable partition_1  partition(province_code='36');loaddatalocal inpath '/root/region/37.csv'intotable partition_1  partition(province_code='37');loaddatalocal inpath '/root/region/41.csv'intotable partition_1  partition(province_code='41');loaddatalocal inpath '/root/region/42.csv'intotable partition_1  partition(province_code='42');loaddatalocal inpath '/root/region/43.csv'intotable partition_1  partition(province_code='43');loaddatalocal inpath '/root/region/44.csv'intotable partition_1  partition(province_code='44');loaddatalocal inpath '/root/region/45.csv'intotable partition_1  partition(province_code='45');loaddatalocal inpath '/root/region/46.csv'intotable partition_1  partition(province_code='46');loaddatalocal inpath '/root/region/51.csv'intotable partition_1  partition(province_code='51');loaddatalocal inpath '/root/region/52.csv'intotable partition_1  partition(province_code='52');loaddatalocal inpath '/root/region/53.csv'intotable partition_1  partition(province_code='53');loaddatalocal inpath '/root/region/54.csv'intotable partition_1  partition(province_code='54');loaddatalocal inpath '/root/region/61.csv'intotable partition_1  partition(province_code='61');loaddatalocal inpath '/root/region/62.csv'intotable partition_1  partition(province_code='62');loaddatalocal inpath '/root/region/63.csv'intotable partition_1  partition(province_code='63');loaddatalocal inpath '/root/region/64.csv'intotable partition_1  partition(province_code='64');loaddatalocal inpath '/root/region/65.csv'intotable partition_1  partition(province_code='65');loaddatalocal inpath '/root/region/71.csv'intotable partition_1  partition(province_code='71');loaddatalocal inpath '/root/region/81.csv'intotable partition_1  partition(province_code='81');loaddatalocal inpath '/root/region/91.csv'intotable partition_1  partition(province_code='91');

外部分区表

创建外部分区表关联目录
hdfs dfs -mkdir -p /partition/partition_2
创建外部分区表
create external table partition_2(
    id_card string,
    real_name string,
    mobile string
)partitioned by(province_code string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/partition/partition_2';
导入数据
loaddatalocal inpath '/root/region/11.csv'intotable partition_2  partition(province_code='11');loaddatalocal inpath '/root/region/12.csv'intotable partition_2  partition(province_code='12');loaddatalocal inpath '/root/region/13.csv'intotable partition_2  partition(province_code='13');loaddatalocal inpath '/root/region/14.csv'intotable partition_2  partition(province_code='14');loaddatalocal inpath '/root/region/15.csv'intotable partition_2  partition(province_code='15');loaddatalocal inpath '/root/region/21.csv'intotable partition_2  partition(province_code='21');loaddatalocal inpath '/root/region/22.csv'intotable partition_2  partition(province_code='22');loaddatalocal inpath '/root/region/23.csv'intotable partition_2  partition(province_code='23');loaddatalocal inpath '/root/region/31.csv'intotable partition_2  partition(province_code='31');loaddatalocal inpath '/root/region/32.csv'intotable partition_2  partition(province_code='32');loaddatalocal inpath '/root/region/33.csv'intotable partition_2  partition(province_code='33');loaddatalocal inpath '/root/region/34.csv'intotable partition_2  partition(province_code='34');loaddatalocal inpath '/root/region/35.csv'intotable partition_2  partition(province_code='35');loaddatalocal inpath '/root/region/36.csv'intotable partition_2  partition(province_code='36');loaddatalocal inpath '/root/region/37.csv'intotable partition_2  partition(province_code='37');loaddatalocal inpath '/root/region/41.csv'intotable partition_2  partition(province_code='41');loaddatalocal inpath '/root/region/42.csv'intotable partition_2  partition(province_code='42');loaddatalocal inpath '/root/region/43.csv'intotable partition_2  partition(province_code='43');loaddatalocal inpath '/root/region/44.csv'intotable partition_2  partition(province_code='44');loaddatalocal inpath '/root/region/45.csv'intotable partition_2  partition(province_code='45');loaddatalocal inpath '/root/region/46.csv'intotable partition_2  partition(province_code='46');loaddatalocal inpath '/root/region/51.csv'intotable partition_2  partition(province_code='51');loaddatalocal inpath '/root/region/52.csv'intotable partition_2  partition(province_code='52');loaddatalocal inpath '/root/region/53.csv'intotable partition_2  partition(province_code='53');loaddatalocal inpath '/root/region/54.csv'intotable partition_2  partition(province_code='54');loaddatalocal inpath '/root/region/61.csv'intotable partition_2  partition(province_code='61');loaddatalocal inpath '/root/region/62.csv'intotable partition_2  partition(province_code='62');loaddatalocal inpath '/root/region/63.csv'intotable partition_2  partition(province_code='63');loaddatalocal inpath '/root/region/64.csv'intotable partition_2  partition(province_code='64');loaddatalocal inpath '/root/region/65.csv'intotable partition_2  partition(province_code='65');loaddatalocal inpath '/root/region/71.csv'intotable partition_2  partition(province_code='71');loaddatalocal inpath '/root/region/81.csv'intotable partition_2  partition(province_code='81');loaddatalocal inpath '/root/region/91.csv'intotable partition_2  partition(province_code='91');

多重内部分区表

创建内部多重内部分区表
createtable partition_3(
    id_card string,
    real_name string,
    mobile string
)partitioned by(province_code string,city_code string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile;
导入数据
loaddatalocal inpath '/root/dongbei/21/2101.csv'intotable partition_3  partition(province_code='21',city_code='2101');loaddatalocal inpath '/root/dongbei/21/2102.csv'intotable partition_3  partition(province_code='21',city_code='2102');loaddatalocal inpath '/root/dongbei/21/2103.csv'intotable partition_3  partition(province_code='21',city_code='2103');loaddatalocal inpath '/root/dongbei/21/2104.csv'intotable partition_3  partition(province_code='21',city_code='2104');loaddatalocal inpath '/root/dongbei/21/2105.csv'intotable partition_3  partition(province_code='21',city_code='2105');loaddatalocal inpath '/root/dongbei/21/2106.csv'intotable partition_3  partition(province_code='21',city_code='2106');loaddatalocal inpath '/root/dongbei/21/2107.csv'intotable partition_3  partition(province_code='21',city_code='2107');loaddatalocal inpath '/root/dongbei/21/2108.csv'intotable partition_3  partition(province_code='21',city_code='2108');loaddatalocal inpath '/root/dongbei/21/2109.csv'intotable partition_3  partition(province_code='21',city_code='2109');loaddatalocal inpath '/root/dongbei/21/2110.csv'intotable partition_3  partition(province_code='21',city_code='2110');loaddatalocal inpath '/root/dongbei/21/2111.csv'intotable partition_3  partition(province_code='21',city_code='2111');loaddatalocal inpath '/root/dongbei/21/2112.csv'intotable partition_3  partition(province_code='21',city_code='2112');loaddatalocal inpath '/root/dongbei/21/2113.csv'intotable partition_3  partition(province_code='21',city_code='2113');loaddatalocal inpath '/root/dongbei/21/2114.csv'intotable partition_3  partition(province_code='21',city_code='2114');loaddatalocal inpath '/root/dongbei/22/2201.csv'intotable partition_3  partition(province_code='22',city_code='2201');loaddatalocal inpath '/root/dongbei/22/2202.csv'intotable partition_3  partition(province_code='22',city_code='2202');loaddatalocal inpath '/root/dongbei/22/2203.csv'intotable partition_3  partition(province_code='22',city_code='2203');loaddatalocal inpath '/root/dongbei/22/2204.csv'intotable partition_3  partition(province_code='22',city_code='2204');loaddatalocal inpath '/root/dongbei/22/2205.csv'intotable partition_3  partition(province_code='22',city_code='2205');loaddatalocal inpath '/root/dongbei/22/2206.csv'intotable partition_3  partition(province_code='22',city_code='2206');loaddatalocal inpath '/root/dongbei/22/2207.csv'intotable partition_3  partition(province_code='22',city_code='2207');loaddatalocal inpath '/root/dongbei/22/2208.csv'intotable partition_3  partition(province_code='22',city_code='2208');loaddatalocal inpath '/root/dongbei/22/2224.csv'intotable partition_3  partition(province_code='22',city_code='2224');loaddatalocal inpath '/root/dongbei/23/2301.csv'intotable partition_3  partition(province_code='23',city_code='2301');loaddatalocal inpath '/root/dongbei/23/2302.csv'intotable partition_3  partition(province_code='23',city_code='2302');loaddatalocal inpath '/root/dongbei/23/2303.csv'intotable partition_3  partition(province_code='23',city_code='2303');loaddatalocal inpath '/root/dongbei/23/2304.csv'intotable partition_3  partition(province_code='23',city_code='2304');loaddatalocal inpath '/root/dongbei/23/2305.csv'intotable partition_3  partition(province_code='23',city_code='2305');loaddatalocal inpath '/root/dongbei/23/2306.csv'intotable partition_3  partition(province_code='23',city_code='2306');loaddatalocal inpath '/root/dongbei/23/2307.csv'intotable partition_3  partition(province_code='23',city_code='2307');loaddatalocal inpath '/root/dongbei/23/2308.csv'intotable partition_3  partition(province_code='23',city_code='2308');loaddatalocal inpath '/root/dongbei/23/2309.csv'intotable partition_3  partition(province_code='23',city_code='2309');loaddatalocal inpath '/root/dongbei/23/2310.csv'intotable partition_3  partition(province_code='23',city_code='2310');loaddatalocal inpath '/root/dongbei/23/2311.csv'intotable partition_3  partition(province_code='23',city_code='2311');loaddatalocal inpath '/root/dongbei/23/2312.csv'intotable partition_3  partition(province_code='23',city_code='2312');

多重外部分区表

创建多重外部分区表关联目录
hdfs dfs -mkdir -p /partition/partition_4
创建多重外部分区表
create external table partition_4(
    id_card string,
    real_name string,
    mobile string
)partitioned by(province_code string,city_code string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile
 location '/partition/partition_4';
导入数据
loaddatalocal inpath '/root/dongbei/21/2101.csv'intotable partition_4  partition(province_code='21',city_code='2101');loaddatalocal inpath '/root/dongbei/21/2102.csv'intotable partition_4  partition(province_code='21',city_code='2102');loaddatalocal inpath '/root/dongbei/21/2103.csv'intotable partition_4  partition(province_code='21',city_code='2103');loaddatalocal inpath '/root/dongbei/21/2104.csv'intotable partition_4  partition(province_code='21',city_code='2104');loaddatalocal inpath '/root/dongbei/21/2105.csv'intotable partition_4  partition(province_code='21',city_code='2105');loaddatalocal inpath '/root/dongbei/21/2106.csv'intotable partition_4  partition(province_code='21',city_code='2106');loaddatalocal inpath '/root/dongbei/21/2107.csv'intotable partition_4  partition(province_code='21',city_code='2107');loaddatalocal inpath '/root/dongbei/21/2108.csv'intotable partition_4  partition(province_code='21',city_code='2108');loaddatalocal inpath '/root/dongbei/21/2109.csv'intotable partition_4  partition(province_code='21',city_code='2109');loaddatalocal inpath '/root/dongbei/21/2110.csv'intotable partition_4  partition(province_code='21',city_code='2110');loaddatalocal inpath '/root/dongbei/21/2111.csv'intotable partition_4  partition(province_code='21',city_code='2111');loaddatalocal inpath '/root/dongbei/21/2112.csv'intotable partition_4  partition(province_code='21',city_code='2112');loaddatalocal inpath '/root/dongbei/21/2113.csv'intotable partition_4  partition(province_code='21',city_code='2113');loaddatalocal inpath '/root/dongbei/21/2114.csv'intotable partition_4  partition(province_code='21',city_code='2114');loaddatalocal inpath '/root/dongbei/22/2201.csv'intotable partition_4  partition(province_code='22',city_code='2201');loaddatalocal inpath '/root/dongbei/22/2202.csv'intotable partition_4  partition(province_code='22',city_code='2202');loaddatalocal inpath '/root/dongbei/22/2203.csv'intotable partition_4  partition(province_code='22',city_code='2203');loaddatalocal inpath '/root/dongbei/22/2204.csv'intotable partition_4  partition(province_code='22',city_code='2204');loaddatalocal inpath '/root/dongbei/22/2205.csv'intotable partition_4  partition(province_code='22',city_code='2205');loaddatalocal inpath '/root/dongbei/22/2206.csv'intotable partition_4  partition(province_code='22',city_code='2206');loaddatalocal inpath '/root/dongbei/22/2207.csv'intotable partition_4  partition(province_code='22',city_code='2207');loaddatalocal inpath '/root/dongbei/22/2208.csv'intotable partition_4  partition(province_code='22',city_code='2208');loaddatalocal inpath '/root/dongbei/22/2224.csv'intotable partition_4  partition(province_code='22',city_code='2224');loaddatalocal inpath '/root/dongbei/23/2301.csv'intotable partition_4  partition(province_code='23',city_code='2301');loaddatalocal inpath '/root/dongbei/23/2302.csv'intotable partition_4  partition(province_code='23',city_code='2302');loaddatalocal inpath '/root/dongbei/23/2303.csv'intotable partition_4  partition(province_code='23',city_code='2303');loaddatalocal inpath '/root/dongbei/23/2304.csv'intotable partition_4  partition(province_code='23',city_code='2304');loaddatalocal inpath '/root/dongbei/23/2305.csv'intotable partition_4  partition(province_code='23',city_code='2305');loaddatalocal inpath '/root/dongbei/23/2306.csv'intotable partition_4  partition(province_code='23',city_code='2306');loaddatalocal inpath '/root/dongbei/23/2307.csv'intotable partition_4  partition(province_code='23',city_code='2307');loaddatalocal inpath '/root/dongbei/23/2308.csv'intotable partition_4  partition(province_code='23',city_code='2308');loaddatalocal inpath '/root/dongbei/23/2309.csv'intotable partition_4  partition(province_code='23',city_code='2309');loaddatalocal inpath '/root/dongbei/23/2310.csv'intotable partition_4  partition(province_code='23',city_code='2310');loaddatalocal inpath '/root/dongbei/23/2311.csv'intotable partition_4  partition(province_code='23',city_code='2311');loaddatalocal inpath '/root/dongbei/23/2312.csv'intotable partition_4  partition(province_code='23',city_code='2312');

动态分区

-- 动态分区功能总开关(默认true,开启)
set hive.exec.dynamic.partition=true;

-- 严格模式和非严格模式
-- 动态分区的模式,默认strict(严格模式),要求必须指定至少一个分区为静态分区,
-- nonstrict(非严格模式)允许所有的分区字段都使用动态分区。
set hive.exec.dynamic.partition.mode=nonstrict;

-- 一条insert语句可同时创建的最大的分区个数,默认为1000。
set hive.exec.max.dynamic.partitions=1000;

-- 单个Mapper或者Reducer可同时创建的最大的分区个数,默认为100。
set hive.exec.max.dynamic.partitions.pernode=100;

-- 一条insert语句可以创建的最大的文件个数,默认100000。
set hive.exec.max.created.files=100000;

-- 当查询结果为空时且进行动态分区时,是否抛出异常,默认false。
set hive.error.on.empty.partition=false;
createtable partition_dynamic(
    id_card string,
    real_name string,
    mobile string
)partitioned by(region_code string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile;
set hive.exec.dynamic.partition=true;set hive.exec.dynamic.partition.mode=nonstrict;set hive.exec.max.dynamic.partitions=1000;set hive.exec.max.dynamic.partitions.pernode=100;set hive.exec.max.created.files=100000;set hive.error.on.empty.partition=false;-- 执行动态分区插入insertintotable partition_dynamic 
select id_card,real_name,mobile,substr(id_card,1,6)from partition_3 
where province_code ='22'and city_code in('2201','2202','2203');
createtable dept_partition_dynamic(
    id int, 
    name string
) 
partitioned by(loc int)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile;
set hive.exec.dynamic.partition=true;set hive.exec.dynamic.partition.mode=nonstrict;set hive.exec.max.dynamic.partitions=1000;set hive.exec.max.dynamic.partitions.pernode=100;set hive.exec.max.created.files=100000;set hive.error.on.empty.partition=false;
insertintotable dept_partition_dynamic select dept_id,dept_name,location_code from dept;

分桶

数据抽样 提高join查询效率

  1. 创建普通表并导入数据
  2. 开启分桶
  3. 查询普通表将,将查询结果插入桶
  4. 从桶中查询数据

创建普通表并导入数据

createtable bucket_source(id int);
loaddatalocal inpath '/root/bucket_source.txt'intotable bucket_source;

开启分桶

set hive.enforce.bucketing=true;

创建桶表

createtable bucket_tb(
   id int)clusteredby(id)into4 buckets;

载入数据到桶表

set hive.enforce.bucketing=true;insertintotable bucket_tb select id from bucket_source where id isnotnull;
-- 数据抽样-- tablesample(bucket x out of y on id);-- 注意:y>=x-- y:表示把桶表中的数据随机分为多少桶-- x: 表示取出第几桶的数据select*from bucket_tb tablesample(bucket 1outof4on id);select*from bucket_tb tablesample(bucket 2outof4on id);select*from bucket_tb tablesample(bucket 3outof4on id);select*from bucket_tb tablesample(bucket 4outof4on id);

视图

createview person_view asselect id,real_name,mod(substr(id_card,17,1),2) gender,mobile from person;

存储与压缩

压缩

压缩格式算法文件后缀名是否可切分编码解码deflatedeflate.deflate否org.apache.hadoop.io.compress.DefaultCodecgzipdeflate.gz否org.apache.hadoop.io.compress.GzipCodecbiz2biz2.bz2是org.apache.hadoop.io.compress.BZip2Codeclzolzo.lzo是com.hadoop.compression.lzo.LzopCodecsnappysnappy.snappy否org.apache.hadoop.io.compress.SnappyCodec

文件格式

行式存储与列式存储

hive表中的数据选择一个合适的文件格式,对于高性能查询是比较有益的。

行式存储 text file、sequence file

列式存储 ORC 、Parquet

text file

hive 默认采用 text file 文件存储格式

createtable tb_user01 (id int,real_name string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as textfile;
set hive.exec.compress.output=true;set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;set mapred.output.compress=true;set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insertinto tb_user01 values(1,'李昊哲'),(2,'李哲');

sequence file

sequence file 文件时 Hadoop 用来存储二进制形式的 key : value 键值对而设计的一种平面文件 flatmap

createtable tb_user02 (id int,real_name string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as sequencefile;
set hive.exec.compress.output=true;set mapreduce.output.fileoutputformat.compress=true;set mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.DeflateCodec;set io.seqfile.compression.type=BLOCK;
insertinto tb_user02 values(1,'李昊哲'),(2,'李哲');

ORC

createtable tb_user03 (id int,real_name string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as orc
 tblproperties("orc.compress"="NONE");
createtable tb_user03 (id int,real_name string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as orc
 tblproperties("orc.compress"="ZLIB");
createtable tb_user03 (id int,real_name string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as orc
 tblproperties("orc.compress"="SNAPPY");
insertinto tb_user03 values(1,'李昊哲'),(2,'李哲');

Parquet

createtable tb_user04 (id int,real_name string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as parquet
 tblproperties("parquet.compression"="uncompressed");
insertinto tb_user03 values(1,'李昊哲'),(2,'李哲');

rcfile

createtable tb_user05 (id int,real_name string)row format delimited fieldsterminatedby','linesterminatedby'\n'
 stored as rcfile;
set hive.exec.compress.output=true;set mapreduce.output.fileoutputformat.compress=true;set mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.DeflateCodec;
insertinto tb_user05 values(1,'李昊哲'),(2,'李哲');
标签: hive hadoop 大数据

本文转载自: https://blog.csdn.net/qq_24330181/article/details/130218122
版权归原作者 李昊哲小课 所有, 如有侵权,请联系我们删除。

“hive3从入门到精通”的评论:

还没有评论