0


【云原生】k8s集群命令行工具kubectl之应用部署命令详解

kubectl应用部署命令详解

一、准备工作

Kubernetes提供的集群控制平面(master节点)与Kubernetes APIServer通信的命令行工具——kubectl。kubectl默认配置文件目录$HOME/.kube/config。可以通过 --kubeconfig 参数来指定kubectl的配置文件。

以下操作如果已经做过了,就可以跳过。

1.1、Replication Controller

(1)创建myhello-rc.yaml并写入如下内容:

vim myhello-rc.yaml

内容:

apiVersion: v1
kind: ReplicationController # 副本控制器 RC
metadata:
  namespace: default
  name: myhello-rc # RC名称,全局唯一
  labels:
    name: myhello-rc
spec:
  replicas: 5# Pod副本期待数量
  selector:
    name: myhello-rc-pod
  template: # pod的定义模板
    metadata:
      labels:
        name: myhello-rc-pod
    spec:
      containers: # Pod 内容的定义部分
      - name: myhello #容器的名称
        image: nongtengfei/hello:1.0.0 #容器对应的 Docker Image
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 80
        env: # 注入到容器的环境变量
        - name: env1
          value: "k8s-env1"
        - name: env2
          value: "k8s-env2"

通常不会去单独的配置pod,都是通过某一类副本控制器资源去部署pod。原因:如果单独配置pod,当集群升级时需要将当前节点上的所有pod排空,那么会产生问题,因为pod没有任何副本控制器在控制它,集群对他没有预期,当节点排空后,pod将不会被调度和重生。

(2)为RC创建service。

vim myhello-svc.yaml

内容:

apiVersion: v1
kind: Service
metadata:
  name: myhello-svc
  labels:
    name: myhello-svc
spec:
  type: NodePort # 对外提供端口
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
    name: http
    nodePort: 30000
  selector:
    name: myhello-rc-pod

(3)应用配置。

kubectl apply -f myhello-svc.yaml -f myhello-rc.yaml

1.2、Deployment

(1)创建myapp-deployment.yaml并写入如下内容:

vim myapp-deployment.yaml

内容:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: myapp-deployment
  labels:
    name: myapp-deploy
spec:
  replicas: 5
  selector:
    matchLabels:
      name: myapp-deploy-pod
  template:
    metadata:
      labels:
        name: myapp-deploy-pod
    spec:
     #nodeSelector:#nodetype: worker
      containers: # Pod 内容的定义部分
      - name: myhello #容器的名称
        image: nongtengfei/hello:1.0.0 #容器对应的 Docker Image
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 80
        env: # 注入到容器的环境变量
        - name: env1
          value: "k8s-env1"
        - name: env2
          value: "k8s-env2"
        resources:
          requests:
            cpu: 100m
      - name: myredis #容器的名称
        image: redis #容器对应的 Docker Image
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 6379
        env: # 注入到容器的环境变量
        - name: env1
          value: "k8s-env1"
        - name: env2
          value: "k8s-env2"
        resources:
          requests:
            cpu: 100m

(2)为deployment创建service。

vim myapp-svc.yaml

内容:

apiVersion: v1
kind: Service
metadata:
  name: myapp-svc
  labels:
    name: myapp-svc
spec:
  type: NodePort # 对外提供端口
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
    name: http
    nodePort: 30001
  selector:
    name: myapp-deploy-pod

(3)应用配置。

kubectl apply -f myapp-svc.yaml -f myapp-deployment.yaml

1.3、DaemonSet

(1)创建myapp-deployment.yaml并写入如下内容:

vim myapp-ds.yaml

内容:

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: myapp-ds
  namespace: default
  labels:
    app: myapp-ds
spec:
  selector:
    matchLabels:
      app: myapp-ds
  template:
    metadata:
      labels:
        app: myapp-ds
    spec:
      tolerations:
      - key: node-role.kubernetes.io/control-plane
        operator: Exists
        effect: NoSchedule
      containers: # Pod 内容的定义部分
      - name: myhello #容器的名称
        image: nongtengfei/hello:1.0.0 #容器对应的 Docker Image
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 80
        env: # 注入到容器的环境变量
        - name: env1
          value: "k8s-env1"
        - name: env2
          value: "k8s-env2"

(2)为DaemonSet创建service。

vim myapp-ds-svc.yaml

内容:

apiVersion: v1
kind: Service
metadata:
  name: myapp-ds-svc
  labels:
    name: myapp-ds-svc
spec:
  type: NodePort # 对外提供端口
  ports:
  - port: 8080
    protocol: TCP
    targetPort: 80
    name: http
    nodePort: 30002
  selector:
    app: myapp-ds

(3)应用配置:

kubectl apply -f myapp-ds-svc.yaml -f myapp-ds.yaml

1.4、查看创建的svc和pod

$ kubectl get svc
NAME           TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
kubernetes     ClusterIP   10.96.0.1       <none>443/TCP          45h
myapp-ds-svc   NodePort    10.96.41.180    <none>8080:30002/TCP   4m3s
myapp-svc      NodePort    10.98.20.127    <none>80:30001/TCP     6m32s
myhello-svc    NodePort    10.106.252.61   <none>80:30000/TCP     14m
$ kubectl get pod
NAME                                READY   STATUS    RESTARTS   AGE
myapp-deployment-5659dbddd8-l6m87   0/2     Pending   0          6m41s
myapp-deployment-5659dbddd8-lxxls   0/2     Pending   0          6m41s
myapp-deployment-5659dbddd8-pqqlx   0/2     Pending   0          6m41s
myapp-deployment-5659dbddd8-xb8xp   0/2     Pending   0          6m41s
myapp-deployment-5659dbddd8-zjgsx   0/2     Pending   0          6m41s
myapp-ds-2zqf9                      1/1     Running   0          2m43s
myhello-rc-2tjmr                    0/1     Pending   0          12m
myhello-rc-44ksd                    0/1     Pending   0          12m
myhello-rc-86g79                    0/1     Pending   0          12m
myhello-rc-df225                    0/1     Pending   0          12m
myhello-rc-lfbzb                    0/1     Pending   0          12m

这里只建立了一个节点,所有只有一个pod。

1.5、kubectl 命令自动补全设置

# 安装自动补全插件sudoapt-getinstall -y bash-completion
# 添加.bashrc文件内容echo"source <(kubectl completion bash)">> ~/.bashrc
# 加载最新的.bashrcsource ~/.bashrc

二、应用部署命令

2.1、diff

显示目前版本与将要应用的版本之间的差异,仅对比yaml文件所定义的项目。
用法:

kubectl diff -f FILENAME

示例:

# 通过文件对比
kubectl diff -f myapp-deployment.yaml
# 通过输入对比cat myapp-deployment.yaml | kubectl diff -f -
# 对比当前目录yaml后缀的文件
kubectl diff -f '*.yaml'

2.2、apply

基于文件或标准输入,将新的配置应用到资源上。
用法:

kubectl apply -f FILENAME

示例:

# 将配置应用到资源
kubectl apply -f myapp-deployment.yaml
# 通过输入的方式讲配置应用到资源cat myapp-deployment.yaml | kubectl apply -f -
# 将当前目录yaml后缀的文件应用到资源
kubectl apply -f '*.yaml'

2.3、replace

基于文件或标准输入,将新的配置已替换的方式应用到资源上。
用法:

kubectl replace -f FILENAME

示例:

# 将配置应用到资源
kubectl replace -f myapp-deployment.yaml
# 通过输入的方式讲配置应用到资源cat myapp-deployment.yaml | kubectl replace -f -

2.4、rollout

管理资源的上线,支持 deployments、daemonsets、statefulsets等资源对象。
用法:

kubectl rollout SUBCOMMAND

以下是支持的SUBCOMMAND。

2.4.1、history

查看历史修订版本和配置。
用法:

kubectl rollout history(TYPE NAME | TYPE/NAME)[flags]

示例:

# 查看DaemonSet/cadvisor 的发布历史
kubectl rollout history ds/myapp-ds
# 查看修订版本号为3的历史记录详细信息
kubectl rollout history daemonset/myapp-ds --revision=3

2.4.2、pause

将提供的资源标记为已暂停。控制器不会协调暂停的资源。使用“kubectl rollout resume”恢复暂停的资源。
当前仅支持 deployment 资源对象,由于deployment的滚动更新机制,如果在部署过程中使用了pause,将会导致一个部署中的pod版本不一致暂停 Deployment,然后再触发一个或多个更新,最后再继续(resume)该 Deployment。这种做法可以在暂停和继续中间对 Deployment 做多次更新,而无需触发不必要的滚动更新。简而言之:多次修改之后,在执行resume命令之后,对之前的修改一起反映到Pod。但是对服务的扩容和缩容不受暂停约束。

用法:

kubectl rollout pause RESOURCE

示例:

# 暂停部署
kubectl rollout pause deployment myapp-deployment

2.4.3、resume

恢复暂停的资源。

控制器不会协调暂停的资源。通过恢复资源,我们可以再次协调资源。当前仅支持恢复deployment。

用法:

kubectl rollout resume RESOURCE

示例:

kubectl rollout resume deployment myapp-deployment

2.4.4、restart

重启资源对象。
用法:

kubectl rollout restart RESOURCE

示例:

# 重启部署
kubectl rollout restart deployment/myapp-deployment
# 重启守护进程
kubectl rollout restart daemonset/myapp-ds
# 根据selector 重启部署
kubectl rollout restart deployment --selector=name=myapp-deploy

2.4.5、status

查看状态。
用法:

kubectl rollout status (TYPE NAME | TYPE/NAME)[flags]

示例:

# 查看发布状态
kubectl rollout status deployment/myapp-deployment

2.4.6、undo

回滚到之前版本。
用法:

kubectl rollout undo (TYPE NAME | TYPE/NAME)[flags]

示例:

# 回滚deployment/myapp-deployment 到上一个版本
kubectl rollout undo deployment/myapp-deployment
# 回滚到指定版本
kubectl rollout undo daemonset/myapp-ds --to-revision=2# 演习回滚,查看结果。并未做真正的操作
kubectl rollout undo --dry-run=server deployment/myapp-deployment

注意:连续的undo,并不会一直往前回滚到很老的版本,而会在最近两个版本间来回切换。
示例:

# 分三次修改镜像版本,分别改为:1.0.0 1.0.1 1.0.2
kubectl edit ds/myapp-ds
# 回滚到上一个版本,查看详情镜像版本为:1.0.1
kubectl rollout undo ds/myapp-ds
# 回滚到上一个版本,查看详情镜像版本为:1.0.2
kubectl rollout undo ds/myapp-ds

2.5、scale

为deployment、replica set、 replication controller、statefulset 设置pod的副本数。
用法:

kubectl scale [--resource-version=version][--current-replicas=count] --    replicas=COUNT (-f FILENAME | TYPE NAME)

示例:

# 修改副本数量为3
kubectl scale --replicas 3 deployment myapp-deployment
# 修改文件定义资源的副本数量为30
kubectl scale --replicas=30 -f myapp-deployment.yaml
# 如果当前副本数为30,则将副本数改为10
kubectl scale --current-replicas=30 --replicas=10 deployment/myapp-deployment
# 将指定 rc 和 deployment的副本数改为6
kubectl scale --replicas=6 rc/myhello-rc deployment/myapp-deployment

2.6、autoscale

创建自动缩放器,自动选择和设置在Kubernetes群集中运行的POD数。支持 deployment、replicaset、stateful set、replication controller等资源对象。当CPU或内存的使用率超过设定值之后,会开始自动扩容。当指标恢复之后,大约5分钟后,会开始缩容。自动伸缩的支持,必须为pod中每个容器设置所需最小资源。
用法:

kubectl autoscale (-f FILENAME | TYPE NAME | TYPE/NAME)[--min=MINPODS] --max=MAXPODS [--cpu-percent=CPU]

示例:

# 最少2个pod ,最多10个pod,采用默认缩放策略
kubectl autoscale deployment myapp-deployment --min=2 --max=10# 最多15个pod,目标pod cpu利用率40%
kubectl autoscale deployment myapp-deployment --min=2 --max=15 --cpu-percent=40
# 查看自动扩展器
kubectl get horizontalpodautoscalers

2.6.1、metrics server

自动伸缩,必须安装metrics server。metrics server 用于获取节点指标。metrics server安装条件,k8s集群必须开启聚合层(默认已配置);节点kubelet 服务启用webhook鉴权(默认已启用)。
metrics server 启动项添加 --kubelet-insecure-tls 选项。
文档:

  1. metrics server。
  2. k8s 聚合层。
  3. k8s扩展服务。
  4. k8s webhook鉴权。
  5. 扩缩策略。

2.6.1、metrics server 安装

components.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
    rbac.authorization.k8s.io/aggregate-to-admin: "true"
    rbac.authorization.k8s.io/aggregate-to-edit: "true"
    rbac.authorization.k8s.io/aggregate-to-view: "true"
  name: system:aggregated-metrics-reader
rules:
- apiGroups:
  - metrics.k8s.io
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
rules:
- apiGroups:
  - ""
  resources:
  - nodes/metrics
  verbs:
  - get
- apiGroups:
  - ""
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:metrics-server
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  ports:
  - name: https
    port: 443
    protocol: TCP
    targetPort: https
  selector:
    k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  selector:
    matchLabels:
      k8s-app: metrics-server
  strategy:
    rollingUpdate:
      maxUnavailable: 0
  template:
    metadata:
      labels:
        k8s-app: metrics-server
    spec:
      containers:
      - args:
        - --cert-dir=/tmp
        - --kubelet-insecure-tls
        - --secure-port=4443
        - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
        - --kubelet-use-node-status-port
        - --metric-resolution=15s
        image: registry.aliyuncs.com/google_containers/metrics-server:v0.6.2
        imagePullPolicy: IfNotPresent
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /livez
            port: https
            scheme: HTTPS
          periodSeconds: 10
        name: metrics-server
        ports:
        - containerPort: 4443
          name: https
          protocol: TCP
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /readyz
            port: https
            scheme: HTTPS
          initialDelaySeconds: 20
          periodSeconds: 10
        resources:
            requests:
              cpu: 100m
              memory: 200Mi
        securityContext:
          allowPrivilegeEscalation: false
          readOnlyRootFilesystem: true
          runAsNonRoot: true
          runAsUser: 1000
        volumeMounts:
        - mountPath: /tmp
          name: tmp-dir
      nodeSelector:
        kubernetes.io/os: linux
      priorityClassName: system-cluster-critical
      serviceAccountName: metrics-server
      volumes:
      - emptyDir: {}
        name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
  labels:
    k8s-app: metrics-server
  name: v1beta1.metrics.k8s.io
spec:
  group: metrics.k8s.io
  groupPriorityMinimum: 100
  insecureSkipTLSVerify: true
  service:
    name: metrics-server
    namespace: kube-system
  version: v1beta1
  versionPriority: 100

执行:

kubectl apply -f components.yaml

在这里插入图片描述


本文转载自: https://blog.csdn.net/Long_xu/article/details/129704457
版权归原作者 Lion Long 所有, 如有侵权,请联系我们删除。

“【云原生】k8s集群命令行工具kubectl之应用部署命令详解”的评论:

还没有评论