0


【强化学习PPO算法】

强化学习PPO算法

  最近再改一个代码,需要改成PPO方式的,由于之前没有接触过此类算法,因此进行了简单学习,论文没有看的很详细,重点看了实现部分,这里只做简单记录。

  这里附上论文链接,需要的可以详细看一下。

  
Proximal Policy Optimization Algorithms.

一、PPO算法

  PPO算法本质上是一个On-Policy的算法,它可以对采样到的样本进行多次利用,在一定程度上解决样本利用率低的问题,收到较好的效果。论文里有两种实现方式,一种是结合KL的penalty的,另一种是clip裁断的方法。大部分都是采用的后者,本文记录的也主要是后者的实现。

二、伪代码

  在网上找了一下伪代码,大概两类,前者是Open AI的,比较精炼,后者是Deepmind的,写的比较详细,在这里同时附上.

在这里插入图片描述

在这里插入图片描述

三、相关的简单理论

1.ratio

在这里插入图片描述
  这里的比例ratio,是两种策略下动作的概率比,而在程序实现中,用的是对动作分布取对数,而后使用e指数相减的方法,具体实现如下所示:

action_logprobs = dist.log_prob(action)
ratios = torch.exp(logprobs - old_logprobs.detach())

2.裁断

在这里插入图片描述
  其中,裁断对应的部分如下图所示:
在这里插入图片描述
  上述公式代表的含义如下:
  clip公式含义.
在这里插入图片描述
  这里我是这样理解的:
  (1)如果A>0,说明现阶段的(st,at)相对较好,那么我们希望该二元组出现的概率越高越好,即ratio中的分子越大越好,但是分母分子不能差太多,因此需要加一个上限;
  (2)如果A<0,说明现阶段的(st,at)相对较差,那么我们希望该二元组出现的概率越低越好,即ratio中的分子越小越好,但是分母分子不能差太多,因此需要加一个下限.

3.Advantage的计算

  论文里计算At的方式如下,在一些情况下可以令lamda为1;还有一种更常用的计算方式是VAE,这里不进行描述.。
在这里插入图片描述
  对应的代码块如下:

defupdate(self, memory):# Monte Carlo estimate of rewards:
        rewards =[]
        discounted_reward =0for reward, is_terminal inzip(reversed(memory.rewards),reversed(memory.is_terminals)):if is_terminal:
                discounted_reward =0
            discounted_reward = reward +(self.gamma * discounted_reward)
            rewards.insert(0, discounted_reward)

4.loss的计算

在这里插入图片描述
  这里的第一项,对应裁断项,需要计算ratio和Advantage,之后进行裁断;
  这里的第二项,对应的为对应的值的均方误差;
  这里的第三项,为交叉熵
  程序的实现如下所示:

surr1 = ratios * advantages
surr2 = torch.clamp(ratios,1- self.eps_clip,1+ self.eps_clip)* advantages
loss =-torch.min(surr1, surr2)+0.5* self.MseLoss(state_values, rewards)-0.01* dist_entropy

四、算法实现

  这里算法的实现参考了一位博主
  PPO代码.

#!/usr/bin/python3# -*-coding:utf-8 -*-# @Time    : 2022/6/18 15:53# @Author  : Wang xiangyu# @File    : PPO.pyimport torch
import torch.nn as nn
from torch.distributions import MultivariateNormal
import gym
import numpy as np

device = torch.device("cuda:0"if torch.cuda.is_available()else"cpu")classMemory:def__init__(self):
        self.actions =[]
        self.states =[]
        self.logprobs =[]
        self.rewards =[]
        self.is_terminals =[]defclear_memory(self):# del语句作用在变量上,而不是数据对象上。删除的是变量,而不是数据。del self.actions[:]del self.states[:]del self.logprobs[:]del self.rewards[:]del self.is_terminals[:]classActorCritic(nn.Module):def__init__(self, state_dim, action_dim, action_std):super(ActorCritic, self).__init__()# action mean range -1 to 1
        self.actor = nn.Sequential(
            nn.Linear(state_dim,64),
            nn.Tanh(),
            nn.Linear(64,32),
            nn.Tanh(),
            nn.Linear(32, action_dim),
            nn.Tanh())# critic
        self.critic = nn.Sequential(
            nn.Linear(state_dim,64),
            nn.Tanh(),
            nn.Linear(64,32),
            nn.Tanh(),
            nn.Linear(32,1))# 方差
        self.action_var = torch.full((action_dim,), action_std * action_std).to(device)defforward(self):# 手动设置异常raise NotImplementedError

    defact(self, state, memory):
        action_mean = self.actor(state)
        cov_mat = torch.diag(self.action_var).to(device)

        dist = MultivariateNormal(action_mean, cov_mat)
        action = dist.sample()
        action_logprob = dist.log_prob(action)

        memory.states.append(state)
        memory.actions.append(action)
        memory.logprobs.append(action_logprob)return action.detach()defevaluate(self, state, action):
        action_mean = self.actor(state)

        action_var = self.action_var.expand_as(action_mean)# torch.diag_embed(input, offset=0, dim1=-2, dim2=-1) → Tensor# Creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2) are filled by input
        cov_mat = torch.diag_embed(action_var).to(device)# 生成一个多元高斯分布矩阵
        dist = MultivariateNormal(action_mean, cov_mat)# 我们的目的是要用这个随机的去逼近真正的选择动作action的高斯分布
        action_logprobs = dist.log_prob(action)# log_prob 是action在前面那个正太分布的概率的log ,我们相信action是对的 ,# 那么我们要求的正态分布曲线中点应该在action这里,所以最大化正太分布的概率的log, 改变mu,sigma得出一条中心点更加在a的正太分布。
        dist_entropy = dist.entropy()
        state_value = self.critic(state)return action_logprobs, torch.squeeze(state_value), dist_entropy

classPPO:def__init__(self, state_dim, action_dim, action_std, lr, betas, gamma, K_epochs, eps_clip):
        self.lr = lr
        self.betas = betas
        self.gamma = gamma
        self.eps_clip = eps_clip
        self.K_epochs = K_epochs

        self.policy = ActorCritic(state_dim, action_dim, action_std).to(device)
        self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=lr, betas=betas)

        self.policy_old = ActorCritic(state_dim, action_dim, action_std).to(device)
        self.policy_old.load_state_dict(self.policy.state_dict())

        self.MseLoss = nn.MSELoss()defselect_action(self, state, memory):
        state = torch.FloatTensor(state.reshape(1,-1)).to(device)return self.policy_old.act(state, memory).cpu().data.numpy().flatten()defupdate(self, memory):# Monte Carlo estimate of rewards:
        rewards =[]
        discounted_reward =0for reward, is_terminal inzip(reversed(memory.rewards),reversed(memory.is_terminals)):if is_terminal:
                discounted_reward =0
            discounted_reward = reward +(self.gamma * discounted_reward)
            rewards.insert(0, discounted_reward)# Normalizing the rewards:
        rewards = torch.tensor(rewards, dtype=torch.float32).to(device)
        rewards =(rewards - rewards.mean())/(rewards.std()+1e-5)# convert list to tensor# 使用stack可以保留两个信息:[1. 序列] 和 [2. 张量矩阵] 信息,属于【扩张再拼接】的函数;
        old_states = torch.squeeze(torch.stack(memory.states).to(device),1).detach()
        old_actions = torch.squeeze(torch.stack(memory.actions).to(device),1).detach()
        old_logprobs = torch.squeeze(torch.stack(memory.logprobs),1).to(device).detach()#这里即可以对样本进行多次利用,提高利用率# Optimize policy for K epochs:for _ inrange(self.K_epochs):# Evaluating old actions and values :
            logprobs, state_values, dist_entropy = self.policy.evaluate(old_states, old_actions)# Finding the ratio (pi_theta / pi_theta__old):
            ratios = torch.exp(logprobs - old_logprobs.detach())# Finding Surrogate Loss:
            advantages = rewards - state_values.detach()
            surr1 = ratios * advantages
            surr2 = torch.clamp(ratios,1- self.eps_clip,1+ self.eps_clip)* advantages
            loss =-torch.min(surr1, surr2)+0.5* self.MseLoss(state_values, rewards)-0.01* dist_entropy

            # take gradient step
            self.optimizer.zero_grad()
            loss.mean().backward()
            self.optimizer.step()# Copy new weights into old policy:
        self.policy_old.load_state_dict(self.policy.state_dict())defmain():############## Hyperparameters ##############
    env_name ="Pendulum-v1"
    render =False
    solved_reward =300# stop training if avg_reward > solved_reward
    log_interval =20# print avg reward in the interval
    max_episodes =10000# max training episodes
    max_timesteps =1500# max timesteps in one episode

    update_timestep =4000# update policy every n timesteps
    action_std =0.5# constant std for action distribution (Multivariate Normal)
    K_epochs =80# update policy for K epochs
    eps_clip =0.2# clip parameter for PPO
    gamma =0.99# discount factor

    lr =0.0003# parameters for Adam optimizer
    betas =(0.9,0.999)############################################## creating environment
    env = gym.make(env_name)
    state_dim = env.observation_space.shape[0]
    action_dim = env.action_space.shape[0]

    memory = Memory()
    ppo = PPO(state_dim, action_dim, action_std, lr, betas, gamma, K_epochs, eps_clip)print(lr, betas)# logging variables
    running_reward =0
    avg_length =0
    time_step =0# training loopfor i_episode inrange(1, max_episodes +1):
        state = env.reset()for t inrange(max_timesteps):
            time_step +=1# Running policy_old:
            action = ppo.select_action(state, memory)
            state, reward, done, _ = env.step(action)# Saving reward and is_terminals:
            memory.rewards.append(reward)
            memory.is_terminals.append(done)# update if its timeif time_step % update_timestep ==0:
                ppo.update(memory)
                memory.clear_memory()
                time_step =0
            running_reward += reward
            if render:
                env.render()if done:break

        avg_length += t+1# stop training if avg_reward > solved_rewardif running_reward >(log_interval * solved_reward):print("########## Solved! ##########")
            torch.save(ppo.policy.state_dict(),'./PPO_continuous_solved_{}.pth'.format(env_name))break# save every 500 episodesif i_episode %500==0:
            torch.save(ppo.policy.state_dict(),'./PPO_continuous_{}.pth'.format(env_name))# loggingif i_episode % log_interval ==0:
            avg_length =int(avg_length / log_interval)
            running_reward =int((running_reward / log_interval))print('Episode {} \t Avg length: {} \t Avg reward: {}'.format(i_episode, avg_length, running_reward))
            running_reward =0
            avg_length =0if __name__ =='__main__':
    main()

五、效果

  可以看到经过一段时间的训练,奖励有了一定升高.

在这里插入图片描述
在这里插入图片描述

六、感悟

  感悟是对改的项目的总结,和本文没有什么关系。
  这次改的项目参考了PPO的代码,架子基本也是搭好的,所以改起来也没有想象的那么困难。但应该是我第一次改代码,之前只是看代码,从来没有尝试改过那么多,可以感觉到看代码和改代码这两个能力间差的真的很多,写代码就更困难了emm,可以说经过这一次,可以更好的看到和别人的差距,不过对自己也有很大提高。在以后的学习中,还是需要多看多写,逐步提高。


本文转载自: https://blog.csdn.net/weixin_47471559/article/details/125593870
版权归原作者 喜欢库里的强化小白 所有, 如有侵权,请联系我们删除。

“【强化学习PPO算法】”的评论:

还没有评论