0


Linux之信号

1.常见信号

虽然最开始的编号是1,最后的编号是64,但是并不是有64个信号,没有32和33号信号,也就是说,一共有62个信号,前31个信号是标准信号(非实时信号),后31个信号是实时信号。

上边的这些信号,各自会在什么条件下产生,默认处理动作是什么,都有在signal(7)中有详细说明,对应的命令是:man 7 signal

2.信号常见处理方式

  1. 忽略此信号。

  2. 执行该信号的默认处理动作。

  3. 提供一个信号处理函数,要求内核在处理该信号时切换到用户态执行这个处理函数,这种方式称为捕捉(Catch)一个信号

3.如何产生信号

通过终端按键产生信号

比如:ctrl+c 对应的是2号信号,即SIGINT,默认处理动作是终止进程;

      ctrl+\对应的是3号信号,即SIGQUIT,默认处理动作是终止进程并且Core Dump.

Core Dump:

首先解释什么是Core Dump。当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部 保存到磁盘上,文件名通常是core,这叫做Core Dump。进程异常终止通常是因为有Bug,比如非法内存访问导致段错误,事后可以用调试器检查core文件以查清错误原因,这叫做Post-mortem Debug(事后调试)。一个进程允许产生多大的core文件取决于进程的Resource Limit(这个信息保存在PCB中)。默认是不允许产生core文件的,因为core文件中可能包含用户密码等敏感信息,不安全。在开发调试阶段可以用ulimit命令改变这个限制,允许产生core文件,首先用ulimit命令改变Shell进程的Resource Limit,允许core文件最大为1024K:$ ulimit -c 1024

其实在之前讲获取子进程status时,当进程是被信号所杀时,有一个比特位是core dump标志位,

core dump就是表征是否发生了 核心转储 ,即当进程出现某种异常的时候,是否由OS将当前进程在内存中的相关核心数据,储存到磁盘中,方便进行调试!!!

为什么生产环境一般都是关闭core dump的,原因是因为core文件的大小相对一般文件来说较大,占空间较大,如果默认打开的话,会形成大量的占内存的core文件,会降低OS的性能。

下面引入Core Dump

先写了一个死循环的代码:

#include <iostream>
#include <unistd.h>

int main()
{
    std::cout<<"pid:  "<<getpid()<<std::endl;
    while(1)
    {}
    return 0;
}

运行进程,通过ctrl+c终止进程,发现并没有形成core dump文件

运行进程,通过ctrl+\终止进程,发现形成了core dump文件

其实我们不难发现,上边为我们在查看信号对应的处理动作时,发现了2号对应的Term和3号对应的Core

下面再举一个例子:

​
#include <iostream>
#include <unistd.h>

int main()
{
    std::cout<<"pid:  "<<getpid()<<std::endl;
    int *p = nullptr;
    *p = 100;
    return 0;
}

​

通过事后用gdb检查core文件,就很容易发现问题所在了!

调用系统函数向进程发信号

举一个例子:

​
#include <iostream>
#include <unistd.h>

int main()
{
    while(1)
    {}
    return 0;
}

​

通过上边我们发现,多按了一次回车,段错误的报错信息才打出来了,原因是因为在终止掉25299进程之前已经回到Shell提示符等待用户输入下一条命令了,但是Shell不希望Segmentation fault信息和用户的输入交织在一起,所以等待用户输入命令之后才显示。

上边的代码本身没有错误,只是因为通过系统函数给进程发送了11号信号(SIGSEGV)导致的。

kill

成功返回0,失败返回-1

raise

成功返回0,失败返回-1

abort

abort函数使当前进程接收到信号而异常终止,就像exit函数一样,abort函数总是会成功的,所以没有返回值。

由软件条件产生信号

下面通过两个例子来介绍

例1:SIGPIPE

#include <iostream>
#include <string>
#include <cstdio>
#include <cstring>
#include <assert.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

using namespace std;

int main()
{
    int pipefd[2] = {0};
    int n = pipe(pipefd);
    assert(n != -1);
    (void)n;

    pid_t id = fork();
    assert(id != -1);
    if (id == 0)
    {
        close(pipefd[0]);
        string message = "我是子进程,我正在给你发消息";
        char send_buffer[1024 * 8];
        int count=0;
        while (true)
        {
            snprintf(send_buffer, sizeof(send_buffer), "%s[%d] : %d",
                    message.c_str(), getpid(), count++);
            write(pipefd[1], send_buffer, strlen(send_buffer));
            sleep(1);
        }
    }
    
    close(pipefd[1]);
    int num=0;
    char buffer[1024 * 8];
    while (true)
    {
        ssize_t s = read(pipefd[0], buffer, sizeof(buffer) - 1);
        if (s > 0)
        {
            buffer[s] = 0;
            cout << "get a message[" << getpid() << "] # " << buffer << endl;
        }
        if (num++ == 5){
            break;
        }
    }
    

    close(pipefd[0]);
    int status = 0;
    pid_t ret = waitpid(id, &status, 0);
    printf("exit code:%d\n", status&0X7F);
    return 0;
}

上边的代码,首先是创建匿名管道,然后让父进程进行读取,子进程一直进行写入,父子进程通信5秒,然后让父进程关闭读端,并且进行waitpid,子进程退出后,父进程waitpid拿到子进程的退出status,提取出退出信号

我们发现,子进程的退出信号是13,即SIGPIPE.

这个例子就是由软件条件产生信号,管道,读端不光不读了,而且还关闭了,写端一直写就没有意义,此时OS会自动终止对应的写进程,通过发送信号的方式,SIGPIPE(13号信号)。

例2:alarm

int main()
{
    int count=0;
    alarm(5);
    while(1)
    {
        cout<<"[count: "<< count <<"]"<<endl;
        sleep(1);
    }
    return 0;
}

输出结果:

alarm函数:

调用alarm函数可以设定一个闹钟,也就是告诉内核在seconds秒之后给当前进程发SIGALRM信号, 该信号的默认处理动作是终止当前进程。

硬件异常产生信号
void handler(int sig)
{
    printf("catch a sig : %d\n", sig);
}
int main()
{
    signal(SIGSEGV, handler);
    int *p = NULL;
    *p = 100;
    while(1)
    {}
    return 0;
}

输出结果:我们会发现不停地打印catch a sig : 11

原因是:硬件一次被硬件以某种方式被硬件检测并通知内核,然后内核向当前进程发生信号,例如当前进程执行了除0,CPU的原酸单元会产生异常,解释为SIGFPE信号发送给进程。再比如上边的例子中进程访问了非法内存地址,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。

4.阻塞信号

信号的有关概念

实际执行信号的处理动作称为信号递达(Delivery)

信号从产生到递达之间的状态,称为信号未决(Pending)。

进程可以选择阻塞 (Block )某个信号。

被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作.

注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作。

信号再内核中的表示

每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。

SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞。

SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler。

如果在进程解除对某信号的阻塞之前这种信号产生过多次,将如何处理?POSIX.1允许系统递送该信号一次或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。

过程即为:pending -> block -> handler(接收到信号,查看该信号是否被阻塞,没被阻塞就执行对应的处理动作)

sigset_t

从上图来看,每个信号只有一个bit的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态,在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,而在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。

信号集操作函数

sigset_t类型对于每种信号用一个bit表示“有效”或“无效”状态,至于这个类型内部如何存储这些bit则依赖于系统实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_ t变量,而不应该对它的内部数据做任何解释,比如用printf直接打印sigset_t变量是没有意义的

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset (sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(const sigset_t *set, int signo);

函数sigemptyset初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含任何有效信号。

函数sigfillset初始化set所指向的信号集,使其中所有信号的对应bit置位,表示 该信号集的有效信号包括系统支持的所有信号。

注意,在使用sigset_ t类型的变量之前,一定要调 用sigemptyset或sigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddset和sigdelset在该信号集中添加或删除某种有效信号。

这四个函数都是成功返回0,出错返回-1。sigismember是一个布尔函数,用于判断一个信号集的有效信号中是否包含某种 信号,若包含则返回1,不包含则返回0,出错返回-1。

sigprocmask

调用函数sigprocmask可以读取或更改进程的信号屏蔽字(阻塞信号集).

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

返回值:若成功则为0,若出错则为-1

如果oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出。如果set是非空指针,则 更改进程的信号屏蔽字,参数how指示如何更改。如果oset和set都是非空指针,则先将原来的信号 屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。假设当前的信号屏蔽字为mask,下表说明了how参数的可选值.

如果调用sigprocmask解除了对当前若干个未决信号的阻塞,则在sigprocmask返回前,至少将其中一个信号递达。

sigpending

下面通过代码来使用一下上面的函数:

static void showPending(sigset_t &pending)
{
    for (int sig = 1; sig <= 31; sig++)
    {
        if (sigismember(&pending, sig))
            std::cout << "1";
        else
            std::cout << "0";
    }
    std::cout << std::endl;
}

static void blockSig(int sig)
{
    sigset_t bset;
    sigemptyset(&bset);
    sigaddset(&bset, sig);
    int n = sigprocmask(SIG_BLOCK, &bset, nullptr);
    assert(n == 0);
    (void)n;
}

int main()
{
    for(int sig = 1; sig <= 31; sig++)
    {
        blockSig(sig);
    }
    sigset_t pending;
    while(true)
    {
        sigpending(&pending);
        showPending(pending);
        sleep(1);
    }
    return 0;
}

输出结果:

通过kill由OS不断地给进程传1-31号信号(除9,19,20号信号,因为会导致进程终止)

通过man 7 signal会看到上边的内容,SIGKILL和SIGSTOP信号无法被捕获,阻塞,忽略。

即不会创建出一个不会被杀死的进程 ,因为无法将SIGKILL和SIGSTOP信号捕获,阻塞,忽略。

5.捕捉信号

如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。

信号产生后,信号可能无法被立即处理,OS将会在合适的时候进行处理-------从内核态返回用户态的时候,OS会进行信号检测和处理!!!

上面的右边的图中,四个蓝色的点是内核态与用户态之间发生切换的时候,红色的点是OS进行信号检测和处理的时候。

CPU寄存器有两套,一套是可见的,另一套是不可见的(OS自己使用的),其中有一个CR3寄存器,使用率表示当前CPU的执行权限 1(内核态) ,3(用户态)。

sigaction

#include <signal.h>

int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);

sigaction函数可以读取和修改与指定信号相关联的处理动作。调用成功则返回0,出错则返回 - 1。signo是指定信号的编号。若act指针非空,则根据act修改该信号的处理动作。若oact指针非 空,则通过oact传出该信号原来的处理动作。act和oact指向sigaction结构体:

sigaction 的结构如下:

将sa_handler赋值为常数SIG_IGN传给sigaction表示忽略信号,赋值为常数SIG_DFL表示执行系统默认动作,赋值为一个函数指针表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函 数,该函数返回值为void,可以带一个int参数,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然,这也是一个回调函数,不是被main函数调用,而是被系统所调用。

当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。 如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字。 sa_flags字段包含一些选项,本章的代码都把sa_flags设为0,sa_sigaction是实时信号的处理函数。

可重入函数与不可重入函数

函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称

为重入。

函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为 不可重入函数,

反之,如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数。

如果一个函数符合以下条件之一则是不可重入的:

调用了malloc或free,因为malloc也是用全局链表来管理堆的。

调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构。

volatile

volatile是一个C/C++关键字,主要用于处理与多线程、中断处理和硬件寄存器等相关的情况。其含义是“易变的”,用于告诉编译器当前变量是易变的,需要在每次使用时都从内存中重新获取值,不应该使用寄存器来存储其值。

int flag = 0;

void changeFlag(int signum)
{
    (void)signum;
    cout <<"change flag: "<< flag;
    flag = 1;
    cout << "->" << flag << endl;
}

int main()
{
    signal(2, changeFlag);
    while(!flag);
    cout << "进程正常退出后:" << flag << endl;
}

当我们使用g++ -O3(g++优化等级最高)进行编译时:

我们发现每发送2号信号后,进程并没有终止。原因是因为,gcc编译的时候进行了优化,他发现main函数内,并没有对flag进行修改的代码,于是每次while进行判断的时候,使用的是储存在寄存器中的值(一直不会发生改变),所以即便进程捕获了2号信号,进程也不会退出。

当在 int flag=0; 前面加了 volatile 关键字后,即 volatile int flag=0;

6.SIGCHLD

int main()
{
    // OS 默认就是忽略的
    // signal(SIGCHLD, SIG_IGN); // 手动设置对子进程进行忽略

    if(fork() == 0)
    {
        cout << "child: " << getpid() << endl;
        sleep(5);
        exit(0);
    }

    while(true)
    {
        cout << "parent: " << getpid() << " 执行我自己的任务!" << endl;
        sleep(1);
    }
}

当我们不对 SIGCHLD 设置 成忽略,通过man 7 signal 查看到OS默认对SIGCHLD是进行忽略的,此时结果是:

当用户显性对 SIGCHLD 设置SIG_IGN时,结果是:

即此时如果我们不等待子进程,子进程退出后,OS自动释放僵尸子进程。

标签: linux signal 信号

本文转载自: https://blog.csdn.net/wmh_1234567/article/details/137386176
版权归原作者 新绿. 所有, 如有侵权,请联系我们删除。

“Linux之信号”的评论:

还没有评论