我们在应对高并发大流量时也会采用类似“抵御洪水”的方案,归纳起来共有三种方法。
- Scale-out(横向扩展):分而治之是一种常见的高并发系统设计方法,采用分布式部署的方式把流量分流开,让每个服务器都承担一部分并发和流量。你也可以简单的理解为是扩容,之所以叫抗住千万级流量的应用,是和你单机能承受住的流量*机器总数 有关系的;
- 缓存:使用缓存来提高系统的性能,就好比用“拓宽河道”的方式抵抗高并发大流量的冲击,简单的可以理解为拓宽河道可以达到提速的目的;
- 异步:在某些场景下,未处理完成之前,我们可以让请求先返回,在数据准备好之后再通知请求方,这样可以在单位时间内处理更多的请求。
罗马不是一天建成的,系统的设计也是如此。不同量级的系统有不同的痛点,也就有不同的架构设计的侧重点。如果都按照百万、千万并发来设计系统,电商一律向淘宝看齐,IM 全都学习微信和 QQ,那么这些系统的命运一定是灭亡。
因为淘宝、微信的系统虽然能够解决同时百万、千万人同时在线的需求,但其内部的复杂程度也远非我们能够想象的。盲目地追从只能让我们的架构复杂不堪,最终难以维护。就拿从单体架构往服务化演进来说,淘宝也是在经历了多年的发展后,发现系统整体的扩展能力出现问题时,开始启动服务化改造项目的。
一般系统的演进过程应该遵循下面的思路:
- 最简单的系统设计满足业务需求和流量现状,选择最熟悉的技术体系。
- 随着流量的增加和业务的变化,修正架构中存在问题的点,如单点问题,横向扩展问题,性能无法满足需求的组件。在这个过程中,选择社区成熟的、团队熟悉的组件帮助我们解决问题,在社区没有合适解决方案的前提下才会自己造轮子。
- 当对架构的小修小补无法满足需求时,考虑重构、重写等大的调整方式以解决现有的问题。
版权归原作者 另一花生 所有, 如有侵权,请联系我们删除。