0


客快物流大数据项目(六十七):客户主题

文章目录

客户主题

一、​​​​​​​背景介绍

客户主题主要是通过分析用户的下单情况构建用户画像

​​​​​​​二、指标明细

指标列表

总客户数

今日新增客户数

留存率(超过180天未下单表示已流失,否则表示留存)

活跃用户数(近10天内有发件的客户表示活跃用户)

月度新老用户数(应该是月度新用户!)

沉睡用户数(3个月~6个月之间的用户表示已沉睡)

流失用户数(9个月未下单表示已流失)

客单数

客单价

平均客单数

普通用户数

三、​​​​​​​表关联关系

1、​​​​​​​事实表

表名

描述

tbl_customer

用户表

2、​​​​​​​​​​​​​​维度表

表名

描述

tbl_codes

物流系统码表

tbl_consumer_sender_info

客户寄件信息表

tbl_express_package

快递包裹表

3、​​​​​​​​​​​​​​关联关系

用户表与维度表的关联关系如下:

四、客户数据拉宽开发

1、​​​​​​​​​​​​​​拉宽后的字段

字段名

别名

字段描述

tbl_customer

id

id

客户ID

tbl_customer

name

name

客户姓名

tbl_customer

tel

tel

客户电话

tbl_customer

mobile

mobile

客户手机

tbl_customer

email

email

客户邮箱

tbl_customer

type

type

客户类型ID

tbl_codes

codeDesc

type_name

客户类型名称

tbl_customer

isownreg

is_own_reg

是否自行注册

tbl_customer

regdt

regdt

注册时间

tbl_customer

regchannelid

reg_channel_id

注册渠道ID

tbl_customer

state

state

客户状态ID

tbl_customer

cdt

cdt

创建时间

tbl_customer

udt

udt

修改时间

tbl_customer

lastlogindt

last_login_dt

最后登录时间

tbl_customer

remark

remark

备注

tbl_consumer_sender_info

cdt

first_cdt

首次下单时间

tbl_consumer_sender_info

cdt

last_cdt

尾次下单时间

tbl_express_package

billCount

billCount

下单总数

tbl_express_package

totalAmount

totalAmount

累计下单金额

tbl_customer

yyyyMMdd(cdt)

day

创建时间

年月日格式

2、​​​​​​​​​​​​​​SQL语句

SELECT 
TC."id" ,
TC."name" ,
TC."tel",
TC."mobile",
TC."email",
TC."type",
TC."is_own_reg",
TC."reg_dt",
TC."reg_channel_id",
TC."state",
TC."cdt",
TC."udt",
TC."last_login_dt",
TC."remark",
customercodes."code_desc",
sender_info.first_cdt AS first_sender_cdt ,
sender_info.last_cdt AS last_sender_cdt, 
sender_info.billCount AS billCount, 
sender_info.totalAmount AS totalAmount
FROM "tbl_customer" tc 
LEFT JOIN (
SELECT 
    "ciid", min(sender_info."id") first_id, max(sender_info."id") last_id, min(sender_info."cdt") first_cdt, max(sender_info."cdt") last_cdt,COUNT(sender_info."id" ) billCount,sum(express_package."actual_amount") totalAmount
    FROM "tbl_consumer_sender_info" sender_info
    LEFT JOIN "tbl_express_package" express_package
        ON SENDER_INFO."pkg_id" =express_package."id"
    GROUP BY sender_info."ciid"
) sender_info
    ON    tc."id" = sender_info."ciid"
LEFT JOIN "tbl_codes" customercodes ON customercodes."type" =16 AND tc."type" =customercodes."code" 

3、​​​​​​​​​​​​​​Spark实现

实现步骤:

  • dwd目录下创建 CustomerDWD** *单例对象,继承自OfflineApp*特质
  • 初始化环境的参数,创建SparkSession对象
  • 获取客户表(tbl_customer)数据,并缓存数据
  • 判断是否是首次运行,如果是首次运行的话,则全量装载数据(含历史数据)
  • 获取客户寄件信息表(tbl_consumer_sender_info数据,并缓存数据
  • 获取客户包裹表(tbl_express_package数据,并缓存数据
  • 获取物流字典码表(tbl_codes)数据,并缓存数据
  • 根据以下方式拉宽仓库车辆明细数据 - 根据客户id,在客户表中获取客户数据- 根据包裹id,在包裹表中获取包裹数据- 根据客户类型id,在物流字典码表中获取客户类型名称数据
  • 创建客户明细宽表(若存在则不创建)
  • 将客户明细宽表数据写入到kudu数据表中
  • 删除缓存数据

3.1、​​​​​​​​​​​​​​初始化环境变量

初始化客户明细拉宽作业的环境变量

package cn.it.logistics.offline.dwd

import cn.it.logistics.common.{CodeTypeMapping, Configuration, OfflineTableDefine, SparkUtils}
import cn.it.logistics.offline.OfflineApp
import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.IntegerType

/**
 * 客户主题数据的拉宽操作
 */
object CustomerDWD extends OfflineApp {
  //定义应用的名称
  val appName = this.getClass.getSimpleName

  def main(args: Array[String]): Unit = {
    /**
     * 实现步骤:
     * 1)初始化sparkConf对象
     * 2)创建sparkSession对象
     * 3)加载kudu中的事实表和维度表的数据(将加载后的数据进行缓存)
     * 4)定义维度表与事实表的关联
     * 5)将拉宽后的数据再次写回到kudu数据库中(DWD明细层)
     * 5.1:创建车辆明细宽表的schema表结构
     * 5.2:创建车辆宽表(判断宽表是否存在,如果不存在则创建)
     * 5.3:将数据写入到kudu中
     * 6)将缓存的数据删除掉
     * 7)停止任务
     */

    //1)初始化sparkConf对象
    val sparkConf: SparkConf = SparkUtils.autoSettingEnv(
      SparkUtils.sparkConf(appName)
    )

    //2)创建sparkSession对象
    val sparkSession: SparkSession = SparkUtils.getSparkSession(sparkConf)
    sparkSession.sparkContext.setLogLevel(Configuration.LOG_OFF)

    //数据处理
    execute(sparkSession)
  }

  /**
   * 数据处理
   *
   * @param sparkSession
   */
  override def execute(sparkSession: SparkSession): Unit = {
    sparkSession.stop()
  }
}

3.2、​​​​​​​​​​​​​​加载客户相关的表并缓存

  • 加载客户表的时候,需要指定日期条件,因为客户主题最终需要Azkaban定时调度执行,每天执行一次增量数据,因此需要指定日期。
  • 判断是否是首次运行,如果是首次运行的话,则全量装载数据(含历史数据)
//导入隐士转换
import sparkSession.implicits._
val customerSenderInfoDF: DataFrame = getKuduSource(sparkSession, TableMapping.consumerSenderInfo, Configuration.isFirstRunnable).persist(StorageLevel.DISK_ONLY_2)
val customerDF = getKuduSource(sparkSession, TableMapping.customer, true).persist(StorageLevel.DISK_ONLY_2)
val expressPageageDF = getKuduSource(sparkSession, TableMapping.expressPackage, true).persist(StorageLevel.DISK_ONLY_2)
val codesDF: DataFrame = getKuduSource(sparkSession, TableMapping.codes, true).persist(StorageLevel.DISK_ONLY_2)
val customerTypeDF = codesDF.where($"type" === CodeTypeMapping.CustomType)

3.3、​​​​​​​​​​​​​​定义表的关联关系

  • 为了在DWS层任务中方便的获取每日增量客户表数据(根据日期),因此在DataFrame基础上动态增加列(day),指定日期格式为yyyyMMdd

代码如下:

//TODO 4)定义维度表与事实表的关联关系
val left_outer = "left_outer"

/**
 * 获取每个用户的首尾单发货信息及发货件数和总金额
 */
val customerSenderDetailInfoDF: DataFrame = customerSenderInfoDF.join(expressPageageDF, expressPageageDF("id") === customerSenderInfoDF("pkgId"), left_outer)
  .groupBy(customerSenderInfoDF("ciid"))
  .agg(min(customerSenderInfoDF("id")).alias("first_id"),
    max(customerSenderInfoDF("id")).alias("last_id"),
    min(expressPageageDF("cdt")).alias("first_cdt"),
    max(expressPageageDF("cdt")).alias("last_cdt"),
    count(customerSenderInfoDF("id")).alias("totalCount"),
    sum(expressPageageDF("actualAmount")).alias("totalAmount")
  )

val customerDetailDF: DataFrame = customerDF
  .join(customerSenderDetailInfoDF, customerDF("id") === customerSenderInfoDF("ciid"), left_outer)
  .join(customerTypeDF, customerDF("type") === customerTypeDF("code").cast(IntegerType), left_outer)
  .sort(customerDF("cdt").asc)
  .select(
    customerDF("id"),
    customerDF("name"),
    customerDF("tel"),
    customerDF("mobile"),
    customerDF("type").cast(IntegerType),
    customerTypeDF("codeDesc").as("type_name"),
    customerDF("isownreg").as("is_own_reg"),
    customerDF("regdt").as("regdt"),
    customerDF("regchannelid").as("reg_channel_id"),
    customerDF("state"),
    customerDF("cdt"),
    customerDF("udt"),
    customerDF("lastlogindt").as("last_login_dt"),
    customerDF("remark"),
    customerSenderDetailInfoDF("first_id").as("first_sender_id"), //首次寄件id
    customerSenderDetailInfoDF("last_id").as("last_sender_id"), //尾次寄件id
    customerSenderDetailInfoDF("first_cdt").as("first_sender_cdt"), //首次寄件时间
    customerSenderDetailInfoDF("last_cdt").as("last_sender_cdt"), //尾次寄件时间
    customerSenderDetailInfoDF("totalCount"), //寄件总次数
    customerSenderDetailInfoDF("totalAmount") //总金额
  )

3.4、​​​​​​​​​​​​​​创建客户明细宽表并将客户明细数据写入到kudu数据表中

客户明细宽表数据需要保存到kudu中,因此在第一次执行客户明细拉宽操作时,客户明细宽表是不存在的,因此需要实现自动判断宽表是否存在,如果不存在则创建

实现步骤:

  • CustomerDWD** *单例对象中调用save*方法

实实现过程:

  • CustomerDWD** *单例对象Main方法中调用save*方法
save(customerDetailDF, OfflineTableDefine.customerDetail)

3.5、​​​​​​​​​​​​​​删除缓存数据

为了释放资源,客户明细宽表数据计算完成以后,需要将缓存的源表数据删除。

//移除缓存
customerDetailDF.unpersist
codesDF.unpersist
expressPackageDF.unpersist
customerSenderDF.unpersist
customerDF.unpersist

3.6、完整代码

package cn.it.logistics.offline.dwd

import cn.it.logistics.common.{CodeTypeMapping, Configuration, OfflineTableDefine, SparkUtils, TableMapping}
import cn.it.logistics.offline.OfflineApp
import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.IntegerType

/**
 * 客户主题数据的拉宽操作
 */
object CustomerDWD extends OfflineApp {
  //定义应用的名称
  val appName = this.getClass.getSimpleName

  def main(args: Array[String]): Unit = {
    /**
     * 实现步骤:
     * 1)初始化sparkConf对象
     * 2)创建sparkSession对象
     * 3)加载kudu中的事实表和维度表的数据(将加载后的数据进行缓存)
     * 4)定义维度表与事实表的关联
     * 5)将拉宽后的数据再次写回到kudu数据库中(DWD明细层)
     * 5.1:创建车辆明细宽表的schema表结构
     * 5.2:创建车辆宽表(判断宽表是否存在,如果不存在则创建)
     * 5.3:将数据写入到kudu中
     * 6)将缓存的数据删除掉
     * 7)停止任务
     */

    //1)初始化sparkConf对象
    val sparkConf: SparkConf = SparkUtils.autoSettingEnv(
      SparkUtils.sparkConf(appName)
    )

    //2)创建sparkSession对象
    val sparkSession: SparkSession = SparkUtils.getSparkSession(sparkConf)
    sparkSession.sparkContext.setLogLevel(Configuration.LOG_OFF)

    //数据处理
    execute(sparkSession)
  }

  /**
   * 数据处理
   *
   * @param sparkSession
   */
  override def execute(sparkSession: SparkSession): Unit = {

    //导入隐士转换
    import sparkSession.implicits._
    val customerSenderInfoDF: DataFrame = getKuduSource(sparkSession, TableMapping.consumerSenderInfo, Configuration.isFirstRunnable).persist(StorageLevel.DISK_ONLY_2)
    val customerDF = getKuduSource(sparkSession, TableMapping.customer, true).persist(StorageLevel.DISK_ONLY_2)
    val expressPageageDF = getKuduSource(sparkSession, TableMapping.expressPackage, true).persist(StorageLevel.DISK_ONLY_2)
    val codesDF: DataFrame = getKuduSource(sparkSession, TableMapping.codes, true).persist(StorageLevel.DISK_ONLY_2)
    val customerTypeDF = codesDF.where($"type" === CodeTypeMapping.CustomType)

    //TODO 4)定义维度表与事实表的关联关系
    val left_outer = "left_outer"

    /**
     * 获取每个用户的首尾单发货信息及发货件数和总金额
     */
    val customerSenderDetailInfoDF: DataFrame = customerSenderInfoDF.join(expressPageageDF, expressPageageDF("id") === customerSenderInfoDF("pkgId"), left_outer)
      .groupBy(customerSenderInfoDF("ciid"))
      .agg(min(customerSenderInfoDF("id")).alias("first_id"),
        max(customerSenderInfoDF("id")).alias("last_id"),
        min(expressPageageDF("cdt")).alias("first_cdt"),
        max(expressPageageDF("cdt")).alias("last_cdt"),
        count(customerSenderInfoDF("id")).alias("totalCount"),
        sum(expressPageageDF("actualAmount")).alias("totalAmount")
      )

    val customerDetailDF: DataFrame = customerDF
      .join(customerSenderDetailInfoDF, customerDF("id") === customerSenderInfoDF("ciid"), left_outer)
      .join(customerTypeDF, customerDF("type") === customerTypeDF("code").cast(IntegerType), left_outer)
      .sort(customerDF("cdt").asc)
      .select(
        customerDF("id"),
        customerDF("name"),
        customerDF("tel"),
        customerDF("mobile"),
        customerDF("type").cast(IntegerType),
        customerTypeDF("codeDesc").as("type_name"),
        customerDF("isownreg").as("is_own_reg"),
        customerDF("regdt").as("regdt"),
        customerDF("regchannelid").as("reg_channel_id"),
        customerDF("state"),
        customerDF("cdt"),
        customerDF("udt"),
        customerDF("lastlogindt").as("last_login_dt"),
        customerDF("remark"),
        customerSenderDetailInfoDF("first_id").as("first_sender_id"), //首次寄件id
        customerSenderDetailInfoDF("last_id").as("last_sender_id"), //尾次寄件id
        customerSenderDetailInfoDF("first_cdt").as("first_sender_cdt"), //首次寄件时间
        customerSenderDetailInfoDF("last_cdt").as("last_sender_cdt"), //尾次寄件时间
        customerSenderDetailInfoDF("totalCount"), //寄件总次数
        customerSenderDetailInfoDF("totalAmount") //总金额
      )

    save(customerDetailDF, OfflineTableDefine.customerDetail)
    // 5.4:将缓存的数据删除掉
    customerDF.unpersist()
    customerSenderInfoDF.unpersist()
    expressPageageDF.unpersist()
    customerTypeDF.unpersist()
    
    sparkSession.stop()
  }
}

五、​​​​​​​​​​​​​​客户数据指标开发

1、​​​​​​​​​​​​​​计算的字段

字段名

字段描述

id

主键id(数据产生时间)

customerTotalCount

总客户数

addtionTotalCount

今日新增客户数(注册时间为今天)

lostCustomerTotalCount

留存数(超过180天未下单表示已流失,否则表示留存)

lostRate

留存率

activeCount

活跃用户数(近10天内有发件的客户表示活跃用户)

monthOfNewCustomerCount

月度新老用户数(应该是月度新用户!)

sleepCustomerCount

沉睡用户数(3个月~6个月之间的用户表示已沉睡)

loseCustomerCount

流失用户数(9个月未下单表示已流失)

customerBillCount

客单数

customerAvgAmount

客单价

avgCustomerBillCount

平均客单数

2、Spark实现

实现步骤:

  • dw****s目录下创建 *ConsumerDWS 单例对象,继承自OfflineApp*特质
  • 初始化环境的参数,创建SparkSession对象
  • 根据指定的日期获取拉宽后的用户宽表(tbl_customer_detail)增量数据,并缓存数据
  • 判断是否是首次运行,如果是首次运行的话,则全量装载数据(含历史数据)
  • 指标计算 - 总客户数- 今日新增客户数(注册时间为今天)- 留存数(超过180天未下单表示已流失,否则表示留存)- 留存率- 活跃用户数(近10天内有发件的客户表示活跃用户)- 月度新老用户数(应该是月度新用户!)- 沉睡用户数(3个月~6个月之间的用户表示已沉睡)- 流失用户数(9个月未下单表示已流失)- 客单数- 客单价- 平均客单数- 普通用户数- 获取当前时间yyyyMMddHH
  • 构建要持久化的指标数据(需要判断计算的指标是否有值,若没有需要赋值默认值
  • 通过StructType构建指定Schema
  • 创建客户指标数据表(若存在则不创建)
  • 持久化指标数据到kudu表

2.1、​​​​​​​​​​​​​​初始化环境变量

package cn.it.logistics.offline.dws

import cn.it.logistics.common.{Configuration, DateHelper, OfflineTableDefine, SparkUtils}
import cn.it.logistics.offline.OfflineApp
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.sql.types.{DoubleType, LongType, Metadata, StringType, StructField, StructType}
import org.apache.spark.sql.functions._
import scala.collection.mutable.ArrayBuffer

/**
 * 客户主题指标计算
 */
object CustomerDWS  extends  OfflineApp {
  //定义应用程序的名称
  val appName = this.getClass.getSimpleName

  def main(args: Array[String]): Unit = {
    /**
     * 实现步骤:
     * 1)创建SparkConf对象
     * 2)创建SparkSession对象
     * 3)读取客户明细宽表的数据
     * 4)对客户明细宽表的数据进行指标的计算
     * 5)将计算好的指标数据写入到kudu数据库中
     * 5.1:定义指标结果表的schema信息
     * 5.2:组织需要写入到kudu表的数据
     * 5.3:判断指标结果表是否存在,如果不存在则创建
     * 5.4:将数据写入到kudu表中
     * 6)删除缓存数据
     * 7)停止任务,退出sparksession
     */

    //TODO 1)创建SparkConf对象
    val sparkConf: SparkConf = SparkUtils.autoSettingEnv(
      SparkUtils.sparkConf(appName)
    )

    //TODO 2)创建SparkSession对象
    val sparkSession: SparkSession = SparkUtils.getSparkSession(sparkConf)
    sparkSession.sparkContext.setLogLevel(Configuration.LOG_OFF)

    //处理数据
    execute(sparkSession)
  }

  /**
   * 数据处理
   *
   * @param sparkSession
   */
  override def execute(sparkSession: SparkSession): Unit = {
sparkSession.stop()
  }
}

2.2、加载客户宽表增量数据并缓存

加载客户宽表的时候,需要指定日期条件,因为客户主题最终需要Azkaban定时调度执行,每天执行一次增量数据,因此需要指定日期。

//TODO 3)读取客户明细宽表的数据(用户主题的数据不需要按照天进行增量更新,而是每天全量运行)
val customerDetailDF = getKuduSource(sparkSession, OfflineTableDefine.customerDetail, Configuration.isFirstRunnable)

2.3、​​​​​​​​​​​​​​指标计算

//定义数据集合
val rows: ArrayBuffer[Row] = ArrayBuffer[Row]()

//TODO 4)对客户明细宽表的数据进行指标的计算
val customerTotalCount: Row = customerDetailDF.agg(count($"id").alias("total_count")).first()

//今日新增客户数
val addTotalCount: Long = customerDetailDF.where(date_format($"regDt", "yyyy-MM-dd").equalTo(DateHelper.getyesterday("yyyy-MM-dd"))).agg(count($"id")).first().getLong(0)

//留存率(超过180天未下单表示已经流失,否则表示留存)
//留存用户数
//val lostCustomerTotalCount: Long = customerDetailDF.join(customerSenderInfoDF.where("cdt >= date_sub(now(), 180)"), customerDetailDF("id") === customerSenderInfoDF("ciid")).count()
val lostCustomerTotalCount: Long = customerDetailDF.where("last_sender_cdt >= date_sub(now(), 180)").count()
println(lostCustomerTotalCount)

//留存率,超过180天未下单的用户数/所有的用户数
val lostRate: Double = (lostCustomerTotalCount / (if (customerTotalCount.isNullAt(0)) 1D else customerTotalCount.getLong(0))).asInstanceOf[Number].doubleValue()
println(lostRate)

// 活跃用户数(近10天内有发件的客户表示活跃用户)
val activeCount = customerDetailDF.where("last_sender_cdt>=date_sub(now(), 10)").count

// 月度新老用户数(应该是月度新用户!)
val monthOfNewCustomerCount = customerDetailDF.where($"regDt".between(trunc($"regDt", "MM"), date_format(current_date(), "yyyy-MM-dd"))).count

// 沉睡用户数(3个月~6个月之间的用户表示已沉睡)
val sleepCustomerCount = customerDetailDF.where("last_sender_cdt>=date_sub(now(), 180) and last_sender_cdt<=date_sub(now(), 90)").count
println(sleepCustomerCount)

// 流失用户数(9个月未下单表示已流失)
val loseCustomerCount = customerDetailDF.where("last_sender_cdt>=date_sub(now(), 270)").count
println(loseCustomerCount)

// 客单数
val customerSendInfoDF = customerDetailDF.where("first_sender_id is not null")

val customerBillCountAndAmount: Row = customerSendInfoDF.agg(sum("totalCount").alias("totalCount"), sum("totalAmount").alias("totalAmount")).first()

// 客单价
val customerAvgAmount = customerBillCountAndAmount.get(1).toString.toDouble / customerBillCountAndAmount.get(0).toString.toDouble //总金额/总件数
println(customerAvgAmount)

// 平均客单数
val avgCustomerBillCount = customerSendInfoDF.count / customerDetailDF.count

// 获取昨天时间yyyyMMdd
val cdt = DateHelper.getyesterday("yyyyMMdd")
// 构建要持久化的指标数据
val rowInfo = Row(
  cdt,
  if (customerTotalCount.isNullAt(0)) 0L else customerTotalCount.get(0).asInstanceOf[Number].longValue(),
  addTotalCount,
  lostCustomerTotalCount,
  lostRate,
  activeCount,
  monthOfNewCustomerCount,
  sleepCustomerCount,
  loseCustomerCount,
  if (customerBillCountAndAmount.isNullAt(0)) 0L else customerBillCountAndAmount.get(0).asInstanceOf[Number].longValue(),
  customerAvgAmount,
  avgCustomerBillCount
)
rows.append(rowInfo)

2.4、​​​​​​​通过StructType构建指定Schema

import sparkSession.implicits._
val schema = StructType(Array(
  StructField("id", StringType, true, Metadata.empty),
  StructField("customerTotalCount", LongType, true, Metadata.empty),
  StructField("addtionTotalCount", LongType, true, Metadata.empty),
  StructField("lostCustomerTotalCount", LongType, true, Metadata.empty),
  StructField("lostRate", DoubleType, true, Metadata.empty),
  StructField("activeCount", LongType, true, Metadata.empty),
  StructField("monthOfNewCustomerCount", LongType, true, Metadata.empty),
  StructField("sleepCustomerCount", LongType, true, Metadata.empty),
  StructField("loseCustomerCount", LongType, true, Metadata.empty),
  StructField("customerBillCount", LongType, true, Metadata.empty),
  StructField("customerAvgAmount", DoubleType, true, Metadata.empty),
  StructField("avgCustomerBillCount", LongType, true, Metadata.empty)
))

2.5、​​​​​​​​​​​​​​持久化指标数据到kudu表

// 5.2:组织要写入到kudu表的数据
val data: RDD[Row] = sparkSession.sparkContext.makeRDD(rows)
val quotaDF: DataFrame = sparkSession.createDataFrame(data, schema)
save(quotaDF, OfflineTableDefine.customerSummery)

2.6、完整代码

package cn.it.logistics.offline.dws

import cn.it.logistics.common.{Configure, DateHelper, OfflineTableDefine, SparkUtils}
import cn.it.logistics.offline.OfflineApp
import cn.it.logistics.offline.dws.ExpressBillDWS.{appName, execute}
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{DoubleType, LongType, Metadata, StringType, StructField, StructType}

import scala.collection.mutable.ArrayBuffer

/**
 * 客户主题开发
 * 读取客户明细宽表的数据,然后进行指标开发,将结果存储到kudu表中(DWS层)
 */
object ConsumerDWS extends  OfflineApp{
  //定义应用的名称
  val appName: String = this.getClass.getSimpleName

  /**
   * 入口函数
   * @param args
   */
  def main(args: Array[String]): Unit = {
    /**
     * 实现步骤:
     * 1)创建sparkConf对象
     * 2)创建SparkSession对象
     * 3)读取客户宽表数据(判断是全量装载还是增量装载),将加载的数据进行缓存
     * 4)对客户明细表的数据进行指标计算
     * 5)将计算好的数写入到kudu表中
     *   5.1)定义写入kudu表的schema结构信息
     *   5.2)将组织好的指标结果集合转换成RDD对象
     *   5.3)创建表,写入数据
     * 6)删除缓存,释放资源
     * 7)停止作业,退出sparkSession
     */

    //TODO 1)创建sparkConf对象
    val sparkConf: SparkConf = SparkUtils.autoSettingEnv(
      SparkUtils.sparkConf(appName),
      SparkUtils.parameterParser(args)
    )

    //TODO 2)创建SparkSession对象
    val sparkSession: SparkSession = SparkUtils.getSparkSession(sparkConf)
    sparkSession.sparkContext.setLogLevel(Configure.LOG_OFF)

    //执行数据处理的逻辑
    execute(sparkSession)
  }

  /**
   * 数据处理
   *
   * @param sparkSession
   */
  override def execute(sparkSession: SparkSession): Unit = {
    //TODO 3)读取客户明细宽表的数据(用户主题的数据不需要按照天进行增量更新,而是每天全量运行)
    val customerDetailDF: DataFrame = getKuduSource(sparkSession, OfflineTableDefine.customerDetail, true)

    import sparkSession.implicits._
    val schema = StructType(Array(
      StructField("id", StringType, true, Metadata.empty),
      StructField("customerTotalCount", LongType, true, Metadata.empty),
      StructField("addtionTotalCount", LongType, true, Metadata.empty),
      StructField("lostCustomerTotalCount", LongType, true, Metadata.empty),
      StructField("lostRate", DoubleType, true, Metadata.empty),
      StructField("activeCount", LongType, true, Metadata.empty),
      StructField("monthOfNewCustomerCount", LongType, true, Metadata.empty),
      StructField("sleepCustomerCount", LongType, true, Metadata.empty),
      StructField("loseCustomerCount", LongType, true, Metadata.empty),
      StructField("customerBillCount", LongType, true, Metadata.empty),
      StructField("customerAvgAmount", DoubleType, true, Metadata.empty),
      StructField("avgCustomerBillCount", LongType, true, Metadata.empty),
      StructField("normalCustomerCount", LongType, true, Metadata.empty)
    ))

    //定义数据集合
    val rows: ArrayBuffer[Row] = ArrayBuffer[Row]()

    //TODO 4)对客户明细宽表的数据进行指标的计算
    val customerTotalCount: Row = customerDetailDF.agg(count($"id").alias("total_count")).first()

    //今日新增客户数
    val addTotalCount: Long = customerDetailDF.where(date_format($"regDt", "yyyy-MM-dd").equalTo(DateHelper.getyestday("yyyy-MM-dd"))).agg(count($"id")).first().getLong(0)

    //留存率(超过180天未下单表示已经流失,否则表示留存)
    //留存用户数
    //val lostCustomerTotalCount: Long = customerDetailDF.join(customerSenderInfoDF.where("cdt >= date_sub(now(), 180)"), customerDetailDF("id") === customerSenderInfoDF("ciid")).count()
    val lostCustomerTotalCount: Long = customerDetailDF.where("last_sender_cdt >= date_sub(now(), 180)").count()
    println(lostCustomerTotalCount)

    //留存率,超过180天未下单的用户数/所有的用户数
    val lostRate: Double = (lostCustomerTotalCount / (if (customerTotalCount.isNullAt(0)) 1D else customerTotalCount.getLong(0))).asInstanceOf[Number].doubleValue()
    println(lostRate)

    // 活跃用户数(近10天内有发件的客户表示活跃用户)
    val activeCount = customerDetailDF.where("last_sender_cdt>=date_sub(now(), 10)").count

    // 月度新老用户数(应该是月度新用户!)
    val monthOfNewCustomerCount = customerDetailDF.where($"regDt".between(trunc($"regDt", "MM"), date_format(current_date(), "yyyy-MM-dd"))).count

    // 沉睡用户数(3个月~6个月之间的用户表示已沉睡)
    val sleepCustomerCount = customerDetailDF.where("last_sender_cdt>=date_sub(now(), 180) and last_sender_cdt<=date_sub(now(), 90)").count
    println(sleepCustomerCount)

    // 流失用户数(9个月未下单表示已流失)
    val loseCustomerCount = customerDetailDF.where("last_sender_cdt>=date_sub(now(), 270)").count
    println(loseCustomerCount)

    // 客单数
    val customerSendInfoDF = customerDetailDF.where("first_sender_id is not null")

    val customerBillCountAndAmount: Row = customerSendInfoDF.agg(sum("totalCount").alias("totalCount"), sum("totalAmount").alias("totalAmount")).first()

    // 客单价
    val customerAvgAmount = customerBillCountAndAmount.get(1).toString.toDouble / customerBillCountAndAmount.get(0).toString.toDouble //总金额/总件数
    println(customerAvgAmount)

    // 平均客单数
    val avgCustomerBillCount = customerSendInfoDF.count / customerDetailDF.count

    // 普通用户数
    val normalCustomerRow: Row = customerDetailDF.where("type=1").agg(count($"id").alias("total_count")).first()
    println(normalCustomerRow)
    val normalCustomerCount: Long = if (normalCustomerRow.isNullAt(0)) 0L else normalCustomerRow.get(0).asInstanceOf[Number].longValue()

    // 获取昨天时间yyyyMMdd
    val cdt = DateHelper.getyestday("yyyyMMdd")
    // 构建要持久化的指标数据
    val rowInfo = Row(
      cdt,
      if (customerTotalCount.isNullAt(0)) 0L else customerTotalCount.get(0).asInstanceOf[Number].longValue(),
      addTotalCount,
      lostCustomerTotalCount,
      lostRate,
      activeCount,
      monthOfNewCustomerCount,
      sleepCustomerCount,
      loseCustomerCount,
      if (customerBillCountAndAmount.isNullAt(0)) 0L else customerBillCountAndAmount.get(0).asInstanceOf[Number].longValue(),
      customerAvgAmount,
      avgCustomerBillCount,
      normalCustomerCount
    )
    rows.append(rowInfo)

    // 5.2:组织要写入到kudu表的数据
    val data: RDD[Row] = sparkSession.sparkContext.makeRDD(rows)

    val quotaDF: DataFrame = sparkSession.createDataFrame(data, schema)
    save(quotaDF, OfflineTableDefine.customerSummery)

    //删除缓存,释放资源
    customerDetailDF.unpersist()

    sparkSession.stop()
  }
}

  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨

本文转载自: https://blog.csdn.net/xiaoweite1/article/details/124786587
版权归原作者 Lansonli 所有, 如有侵权,请联系我们删除。

“客快物流大数据项目(六十七):客户主题”的评论:

还没有评论