大家好呀!我是小杨。小杨前面将C语言中的操作符这部分知识做了一个大总结,想必大家认真看后应该收获颇多吧。那么今天就对表达式求值这部分内容进行归纳一下,在方便自己复习的同时也能够帮助到大家。加油,追梦人!
文章目录
✍表达式求值
表达式求值的顺序一部分是由操作符的优先级和结合性决定。
同样,有些表达式的操作数在求值的过程中可能需要转换为其他类型。
✍1,隐式类型转换
C的整型算术运算总是至少以缺省整型类型的精度来进行的。
为了获得这个精度,表达式中的字符和短整型操作数在使用之前被转换为普通整型,这种转换称为整型提升。
整型提升的意义:
表达式的整型运算要在CPU的相应运算器件内执行,CPU内整型运算器(ALU)的操作数的字节长度
一般就是int的字节长度,同时也是CPU的通用寄存器的长度。
因此,即使两个char类型的相加,在CPU执行时实际上也要先转换为CPU内整型操作数的标准长
度。
通用CPU(general-purpose CPU)是难以直接实现两个8比特字节直接相加运算(虽然机器指令
中可能有这种字节相加指令)。所以,表达式中各种长度可能小于int长度的整型值,都必须先转
换为int或unsigned int,然后才能送入CPU去执行运算。
为了能够更好的理解其用法,小杨通过几个实例来进行讲解。
实例:
#include<stdio.h>intmain(){char a =5;char b =-13;char c = a + b;printf("%d", c);return0;}
CPU执行运算流程:
a和b的值被提升为普通整型,然后再执行加法运算。
加法运算完成之后,结果将被截断,然后再存储于c中。
扩展:截断是把大类型的数据给小空间类型的数据赋值的时候,因为小类型空间不足,所以产生截断。
在这里,小杨先给大家扩展一个小知识:如何进行整体提升呢?
解答:整形提升是按照变量的数据类型的符号位来提升的。
为了能够更好的理解整型提升是如何进行的,小杨举了下述整形提升的例子。
负数的整形提升
char c1 = -1;
变量c1的二进制位(补码)中只有8个比特位:
1111111
因为 char 为有符号的 char,
所以整形提升的时候,高位补充符号位,即为1
提升之后的结果是:
11111111111111111111111111111111
正数的整形提升
char c2 = 1;
变量c2的二进制位(补码)中只有8个比特位:
00000001
因为 char 为有符号的 char
所以整形提升的时候,高位补充符号位,即为0
提升之后的结果是:
00000000000000000000000000000001
切记:无符号整形提升,高位补0
知道了如何将char类型和short短整型类是如何进行整型提升的,那么回到之前最先那个实例,这个实例的程序输出结果是什么,大家应该都知道如何去运算也能求出正确的答案了吧。
通过打印输出实例结果:
分析流程:
通过上述流程得到的结果与程序代码打印出的结果相同,我们可以知道流程没有出错。
到这里,可能还有一些小伙伴还是对整型转换这个知识点不太理解,别急,小杨再举个实例。
实例2:
#include<stdio.h>intmain(){char a =0xb6;short b =0xb600;int c =0xb6000000;if(a ==0xb6)printf("a");if(b ==0xb600)printf("b");if(c ==0xb6000000)printf("c");return0;}
小伙伴们,能够知道这个实例的输出结果吗?如果可以,说明你已经掌握了整型提升这个知识点;如果不可以也不要灰心,对这个知识点多看几遍就行,俗话说:孰能生巧,没有什么是一蹴而就的。
说明:其实这个实例不会很难,实例中的a,b要进行整形提升,但是c不需要整形提升,a,b整形提升之后,变成了负数,所以表达式 a==0xb6 , b==0xb600 的结果为假,但是c不发生整形提升,则表达式c==0xb6000000 的结果是真,所程序输出的结果是c。
实例输出结果:
✍2,算术转换
如果某个操作符的各个操作数属于不同的类型,那么除非其中一个操作数的转换为另一个操作数的类
型,否则操作就无法进行。下面的层次体系称为寻常算术转换。
long double 多精度浮点类型或长精度浮点类型
double 双精度浮点型
float 单精度浮点型
unsigned long int 无符号长整型
long int 长整型
unsigned int 无符号整型
int 整型
如果某个操作数的类型在上面这个列表中排名较低,那么首先要转换为另外一个操作数的类型后执行运算。
如果double双精度浮点型的数与int整型的数进行运算,要先把int型数据提升转换为double型数据,然后再执行相应的运算,运算完成之后,结果将被截断,然后再存储于c中。
#include<stdio.h>intmain(){double a =5.0;int b =-13;int c = a + b;printf("%d", c);return0;}
实例输出结果:
警告:算术转换要合理,否则会出现一些潜在的风险。
实例:
#include<stdio.h>intmain(){float f =3.14;int num = f;//隐式转换,会有精度丢失printf("%d", num);return0;}
实例输出结果:
最后,小杨在系统归纳一下算术转换:
算术转换,是两个不同类型数据运算的时候需要解释为相同类型进行计算。
比如有符号和无符号,会把有符号的数据当做无符号参与运算,-1会被解释成为很大的一个数字, 还有整形和浮点型会解释成为浮点型之后参与运算。
换而言之,我们也可以这样理解,算术转换就是编译器做的特殊处理而已,知道有符号和无符号运算转成无符号参与,整形与浮点,会转成浮点参与运算就行。
具体情况具体分析,空说其实没有太大意义,先了解这些功能就行。
✍3,操作符属性
复杂表达式的求值有三个影响的因素。
1. 操作符的优先级
2. 操作符的结合性
3. 是否控制求值顺序。
两个相邻的操作符先执行哪个?
取决于他们的优先级。如果两者的优先级相同,取决于他们的结合性。
各操作符的相关性质如下表所示:
操作符描述用法示例结果类型结合性是否控制求值顺序()聚组(表达式)与表达式同N/A否()函数调用rexp(rexp,…,rexp)rexpL-R否[ ]下标引用rexp[rexp]lexpL-R否.访问结构成员lexp.member_namelexpL-R否->访问结构指针成员rexp->member_namelexpL-R否++后缀自增lexp ++rexpL-R否–后缀自减lexp –rexpL-R否!逻辑反! rexprexpR-L否按位取反 rexprexpR-L否+单目,表示正值+ rexprexpR-L否-单目,表示负值- rexprexpR-L否++前缀自增++ lexprexpR-L否–前缀自减– lexprexpR-L否间接访问 rexplexpR-L否&取地址& lexprexpR-L否sizeof取其长度,以字节表示sizeof rexpsizeof(类型)rexpR-L否(类型)类型转换(类型) rexprexpR-L否*乘法rexp * rexprexpL-R否/除法rexp / rexprexpL-R否%整数取余rexp %rexpL-R否+加法rexp + rexprexpL-R否-减法rexp - rexprexpL-R否<<左移位rexp << rexprexpL-R否>>右移位rexp >> rexprexpL-R否>大于rexp > rexprexpL-R否>=大于等于rexp >= rexprexpL-R否<小于rexp < rexprexpL-R否<=小于等于rexp <= rexprexpL-R否==等于rexp == rexprexpL-R否!=不等于rexp != rexprexpL-R否&位与rexp & rexprexpL-R否^位异或rexp ^ rexprexpL-R否|位或rexp| rexprexpL-R否&&逻辑与rexp && rexprexpL-R是||逻辑或rexp || rexprexpL-R是? :条件操作符rexp ? rexp : rexprexpN/A是=赋值lexp = rexprexpR-L否+=以…加lexp += rexprexpR-L否-=以…减lexp -= rexprexpR-L否*=以…乘lexp *= rexprexpR-L否/=以…除lexp /= rexprexpR-L否%=以…取模lexp %= rexprexpR-L否<<=以…左移lexp <<= rexprexpR-L否>>=以…右移lexp >>= rexprexpR-L否&=以…与&= rexprexpR-L否^=以…异或lexp ^= rexprexpR-L否|=以…或lexp | = rexprexpR-L否,逗号rexp,rexprexpL-R是
操作符优先级:由上到下依次降低。
小杨在这里提醒一下:这个详细记录各操作符的性质的表不需要刻意地去被背诵,只需要掌握一些常见的操作符用法就可以了,了解个大概即可。
结语
小伙伴们,当你学到这里的时候,你们应该对表达式求值部分的内容已经有了全新的认识吧!🥳🥳🥳后续小杨会给大家总结其他的内容,不断更新优质的内容来帮助大家,一起进步。加油,追梦人!让我们一起拥抱美好明天!🎆🎆🎆
版权归原作者 「小杨」 所有, 如有侵权,请联系我们删除。