0


基于Matlab的各种图像滤波Filter算法(代码开源)_matlab 图像滤波

1.2 图像噪声

在数字图像处理中,由于成像系统传输介质记录设备等的不完善,数字图像在其形成、传输和记录过程中往往会受到多种噪声的污染。这些噪声在图像上常表现为一些孤立像素点或像素块,它们以无用的信息形式出现,扰乱了图像的可观测信息。因此,图像滤波核心目的是消除这些噪声,以便更好地提取出图像的特征。

★常见的图像噪声分类:(1)椒盐噪声;(2)高斯噪声;(3)泊松噪声

1.2.1 椒盐噪声

椒盐噪声(salt-and-pepper noise)又称脉冲噪声,它随机改变一些像素值,在二值图像上表现为使一些像素点变白,一些像素点变黑。 是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声,也就是老人们比较熟悉的所谓“雪花”。作者补充:RGB图像上的椒盐噪声也可以为红绿蓝(RGB)的像素点。

matlab代码:

%%椒盐噪声
close all;
clear all;
clc;
I=imread('test.png');
I=im2double(I);
% J = imnoise(I,‘salt & pepper’,d),默认d=0.05
% 在添加类型为Salt & Pepper的噪声时,符号&的前面和后面必须有空格,否则系统会出错
J=imnoise(I,'salt & pepper',0.01);
K=imnoise(I,'salt & pepper',0.05);
% 图像中黑色的像素点为椒盐噪声,白色的像素点为盐噪声
subplot(131),imshow(I);
subplot(132),imshow(J);
subplot(133),imshow(K);
1.2.2 高斯噪声

高斯噪声是一种源于电子电路噪声和由低照明度或高温带来的传感器噪声。高斯噪声又称为正态噪声,是自然界中最常见的噪声。高斯噪声可以通过平滑滤波技术或图像复原技术来消除。

matlab代码:

%%高斯滤波
close all;
clear all;
clc;
I=imread('test1.jpg');
h=0:0.1:1; % h为在[0,1]之间的向量,表示图像的亮度值
v=0.01:-0.001:0; % v为一个长度和h相同,表示与h中亮度对应的高斯噪声的方差
% J=imnoise(I,'localvar',h,v)在图像的不同亮度值上叠加不同方差的高斯噪声,向量h中没有的亮度值将自动插值得到
J=imnoise(I,'localvar',h,v);
subplot(121),imshow(I);
subplot(122),imshow(J);
1.2.3 泊松噪声

泊松噪声则是满足泊松分布的噪音,你会觉得它和正态分布很相似,其实如果我们采集的数据越多,精度越密,其形态上它越发接近高斯分布函数,也就是正态分布,是常见的一种满足指数函数分布的离散模型

作者补充:噪声的添加效果一定程度上依赖初始图像,泊松噪声和高斯噪声看似一模一样,其实还是有些区别的。椒盐噪声和高斯噪声(指数型噪声)存在明显的区别,特别有随机性的感觉。读者朋友可以使用自己的图像进行测试,好好熟悉一下这些噪声!

matlab代码:

%%泊松噪声
close all;
clear all;
clc;
I=imread('test3.png');
% J = imnoise(I,‘poisson’)添加泊松噪声给图像I
J=imnoise(I,'poisson');
subplot(121),imshow(I);
subplot(122),imshow(J);

1.3 图像滤波分类

常见的线性滤波器:
**

标签: 嵌入式

本文转载自: https://blog.csdn.net/2401_84009679/article/details/137427430
版权归原作者 2401_84009679 所有, 如有侵权,请联系我们删除。

“基于Matlab的各种图像滤波Filter算法(代码开源)_matlab 图像滤波”的评论:

还没有评论