0


OpenPCDet 训练自己的数据集详细教程!

文章目录


前言

这些天一直在尝试通过OpenPCDet平台训练自己的数据集(非kitti格式),好在最后终于跑通了,特此记录一下训练过程。


一、pcd转bin

笔者自己的点云数据是pcd格式的,参照kitti训练过程是需要转成bin格式的。
下面给出转换代码:

# -*- coding: utf-8 -*- # @Time : 2022/7/25 11:30 # @Author : JulyLi# @File : pcd2bin.pyimport numpy as np
import os
import argparse
from pypcd import pypcd
import csv
from tqdm import tqdm

defmain():## Add parser
    parser = argparse.ArgumentParser(description="Convert .pcd to .bin")
    parser.add_argument("--pcd_path",help=".pcd file path.",type=str,
        default="pcd_raw1")
    parser.add_argument("--bin_path",help=".bin file path.",type=str,
        default="bin")
    parser.add_argument("--file_name",help="File name.",type=str,
        default="file_name")
    args = parser.parse_args()## Find all pcd files
    pcd_files =[]for(path,dir, files)in os.walk(args.pcd_path):for filename in files:# print(filename)
            ext = os.path.splitext(filename)[-1]if ext =='.pcd':
                pcd_files.append(path +"/"+ filename)## Sort pcd files by file name
    pcd_files.sort()print("Finish to load point clouds!")## Make bin_path directorytry:ifnot(os.path.isdir(args.bin_path)):
            os.makedirs(os.path.join(args.bin_path))except OSError as e:# if e.errno != errno.EEXIST:#     print("Failed to create directory!!!!!")raise## Generate csv meta file
    csv_file_path = os.path.join(args.bin_path,"meta.csv")
    csv_file =open(csv_file_path,"w")
    meta_file = csv.writer(
        csv_file, delimiter=",", quotechar="|", quoting=csv.QUOTE_MINIMAL
    )## Write csv meta file header
    meta_file.writerow(["pcd file name","bin file name",])print("Finish to generate csv meta file")## Converting Processprint("Converting Start!")
    seq =0for pcd_file in tqdm(pcd_files):## Get pcd file
        pc = pypcd.PointCloud.from_path(pcd_file)## Generate bin file name# bin_file_name = "{}_{:05d}.bin".format(args.file_name, seq)
        bin_file_name ="{:05d}.bin".format(seq)
        bin_file_path = os.path.join(args.bin_path, bin_file_name)## Get data from pcd (x, y, z, intensity, ring, time)
        np_x =(np.array(pc.pc_data['x'], dtype=np.float32)).astype(np.float32)
        np_y =(np.array(pc.pc_data['y'], dtype=np.float32)).astype(np.float32)
        np_z =(np.array(pc.pc_data['z'], dtype=np.float32)).astype(np.float32)
        np_i =(np.array(pc.pc_data['intensity'], dtype=np.float32)).astype(np.float32)/256# np_r = (np.array(pc.pc_data['ring'], dtype=np.float32)).astype(np.float32)# np_t = (np.array(pc.pc_data['time'], dtype=np.float32)).astype(np.float32)## Stack all data
        points_32 = np.transpose(np.vstack((np_x, np_y, np_z, np_i)))## Save bin file
        points_32.tofile(bin_file_path)## Write csv meta file
        meta_file.writerow([os.path.split(pcd_file)[-1], bin_file_name])

        seq = seq +1if __name__ =="__main__":
    main()

二、labelCloud 工具安装与使用

拉取源码

git clone https://github.com/ch-sa/labelCloud.git

安装依赖

pip install -r requirements.txt

启动程序

python labelCloud.py

启动后出现如下界面:
在这里插入图片描述

setting

界面按需设置,笔者这里按

kitti

格式生成label数据:
在这里插入图片描述
标注完成后会在对应目录下生成标签:
在这里插入图片描述
标签内容大致如下:
在这里插入图片描述

三、训练

仿写代码

pcdet/datasets/kitti文件夹

复制并改名为

pcdet/datasets/custom

,然后把

pcdet/utils/object3d_kitti.py

复制为

pcdet/utils/object3d_custom.py

data/kitti文件夹

复制并改名为

data/custom

,然后修改训练信息,结构如下:

custom
├── ImageSets
│   ├── test.txt
│   ├── train.txt
├── testing
│   ├── velodyne
├── training
│   ├── label_2
│   ├── velodyne

对pcdet/datasets/custom/custom_dataset.py进行改写

import copy
import pickle
import os

import numpy as np
from skimage import io

from.import custom_utils
from...ops.roiaware_pool3d import roiaware_pool3d_utils
from...utils import box_utils, common_utils, object3d_custom
from..dataset import DatasetTemplate

classCustomDataset(DatasetTemplate):def__init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None, ext='.bin'):"""
        Args:
            root_path:
            dataset_cfg:
            class_names:
            training:
            logger:
        """super().__init__(
            dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger
        )
        self.split = self.dataset_cfg.DATA_SPLIT[self.mode]
        self.root_split_path = os.path.join(self.root_path,('training'if self.split !='test'else'testing'))

        split_dir = os.path.join(self.root_path,'ImageSets',(self.split +'.txt'))
        self.sample_id_list =[x.strip()for x inopen(split_dir).readlines()]if os.path.exists(split_dir)elseNone

        self.custom_infos =[]
        self.include_custom_data(self.mode)
        self.ext = ext

    definclude_custom_data(self, mode):if self.logger isnotNone:
            self.logger.info('Loading Custom dataset.')
        custom_infos =[]for info_path in self.dataset_cfg.INFO_PATH[mode]:
            info_path = self.root_path / info_path
            ifnot info_path.exists():continuewithopen(info_path,'rb')as f:
                infos = pickle.load(f)
                custom_infos.extend(infos)
        
        self.custom_infos.extend(custom_infos)if self.logger isnotNone:
            self.logger.info('Total samples for CUSTOM dataset: %d'%(len(custom_infos)))defget_infos(self, num_workers=16, has_label=True, count_inside_pts=True, sample_id_list=None):import concurrent.futures as futures

        # Process single scenedefprocess_single_scene(sample_idx):print('%s sample_idx: %s'%(self.split, sample_idx))# define an empty dict
            info ={}# pts infos: dimention and idx
            pc_info ={'num_features':4,'lidar_idx': sample_idx}# add to pts infos
            info['point_cloud']= pc_info

            # no images, calibs are need to transform the labels

            type_to_id ={'Car':1,'Pedestrian':2,'Cyclist':3}if has_label:# read labels to build object list according to idx
                obj_list = self.get_label(sample_idx)# build an empty annotations dict
                annotations ={}# add to annotations ==> refer to 'object3d_custom' (no truncated,occluded,alpha,bbox)
                annotations['name']= np.array([obj.cls_type for obj in obj_list])# 1-dimension# hwl(camera) format 2-dimension: The kitti-labels are in camera-coord# h,w,l -> 0.21,0.22,0.33 (see object3d_custom.py h=label[8], w=label[9], l=label[10])
                annotations['dimensions']= np.array([[obj.l, obj.h, obj.w]for obj in obj_list])             
                annotations['location']= np.concatenate([obj.loc.reshape(1,3)for obj in obj_list])
                annotations['rotation_y']= np.array([obj.ry for obj in obj_list])# 1-dimension

                num_objects =len([obj.cls_type for obj in obj_list if obj.cls_type !='DontCare'])
                num_gt =len(annotations['name'])
                index =list(range(num_objects))+[-1]*(num_gt - num_objects)
                annotations['index']= np.array(index, dtype=np.int32)

                loc = annotations['location'][:num_objects]
                dims = annotations['dimensions'][:num_objects]
                rots = annotations['rotation_y'][:num_objects]# camera -> lidar: The points of custom_dataset are already in lidar-coord# But the labels are in camera-coord and need to transform
                loc_lidar = self.get_calib(loc)
                l, h, w = dims[:,0:1], dims[:,1:2], dims[:,2:3]# bottom center -> object center: no need for loc_lidar[:, 2] += h[:, 0] / 2# print("sample_idx: ", sample_idx, "loc: ", loc, "loc_lidar: " , sample_idx, loc_lidar)# get gt_boxes_lidar see https://zhuanlan.zhihu.com/p/152120636
                gt_boxes_lidar = np.concatenate([loc_lidar, l, w, h,(np.pi /2- rots[..., np.newaxis])], axis=1)# 2-dimension array
                annotations['gt_boxes_lidar']= gt_boxes_lidar
                
                # add annotation info
                info['annos']= annotations
            
            return info
        
        sample_id_list = sample_id_list if sample_id_list isnotNoneelse self.sample_id_list
        # create a thread pool to improve the velocitywith futures.ThreadPoolExecutor(num_workers)as executor:
            infos = executor.map(process_single_scene, sample_id_list)# infos is a list that each element represents per framereturnlist(infos)defget_calib(self, loc):"""
        This calibration is different from the kitti dataset.
        The transform formual of labelCloud: ROOT/labelCloud/io/labels/kitti.py: import labels
            if self.transformed:
                centroid = centroid[2], -centroid[0], centroid[1] - 2.3
            dimensions = [float(v) for v in line_elements[8:11]]
            if self.transformed:
                dimensions = dimensions[2], dimensions[1], dimensions[0]
            bbox = BBox(*centroid, *dimensions)
        """
        loc_lidar = np.concatenate([np.array((float(loc_obj[2]),float(-loc_obj[0]),float(loc_obj[1]-2.3)), dtype=np.float32).reshape(1,3)for loc_obj in loc])return loc_lidar
                

    defget_label(self, idx):# get labels
        label_file = self.root_split_path /'label_2'/('%s.txt'% idx)assert label_file.exists()return object3d_custom.get_objects_from_label(label_file)defget_lidar(self, idx, getitem):"""
            Loads point clouds for a sample
                Args:
                    index (int): Index of the point cloud file to get.
                Returns:
                    np.array(N, 4): point cloud.
        """# get lidar statisticsif getitem ==True:
            lidar_file = self.root_split_path +'/velodyne/'+('%s.bin'% idx)else:
            lidar_file = self.root_split_path /'velodyne'/('%s.bin'% idx)return np.fromfile(str(lidar_file), dtype=np.float32).reshape(-1,4)defset_split(self, split):super().__init__(
            dataset_cfg=self.dataset_cfg, class_names=self.class_names, training=self.training, root_path=self.root_path, logger=self.logger
        )
        self.split = split
        self.root_split_path = self.root_path /('training'if self.split !='test'else'testing')

        split_dir = self.root_path /'ImageSets'/(self.split +'.txt')
        self.sample_id_list =[x.strip()for x inopen(split_dir).readlines()]if split_dir.exists()elseNone# Create gt database for data augmentationdefcreate_groundtruth_database(self, info_path=None, used_classes=None, split='train'):import torch

        # Specify the direction
        database_save_path = Path(self.root_path)/('gt_database'if split =='train'else('gt_database_%s'% split))
        db_info_save_path = Path(self.root_path)/('custom_dbinfos_%s.pkl'% split)

        database_save_path.mkdir(parents=True, exist_ok=True)
        all_db_infos ={}# Open 'custom_train_info.pkl'withopen(info_path,'rb')as f:
            infos = pickle.load(f)# For each .bin filefor k inrange(len(infos)):print('gt_database sample: %d/%d'%(k +1,len(infos)))# Get current scene info
            info = infos[k]
            sample_idx = info['point_cloud']['lidar_idx']
            points = self.get_lidar(sample_idx,False)
            annos = info['annos']
            names = annos['name']
            gt_boxes = annos['gt_boxes_lidar']

            num_obj = gt_boxes.shape[0]
            point_indices = roiaware_pool3d_utils.points_in_boxes_cpu(
                torch.from_numpy(points[:,0:3]), torch.from_numpy(gt_boxes)).numpy()# (nboxes, npoints)for i inrange(num_obj):
                filename ='%s_%s_%d.bin'%(sample_idx, names[i], i)
                filepath = database_save_path / filename
                gt_points = points[point_indices[i]>0]

                gt_points[:,:3]-= gt_boxes[i,:3]withopen(filepath,'w')as f:
                    gt_points.tofile(f)if(used_classes isNone)or names[i]in used_classes:
                    db_path =str(filepath.relative_to(self.root_path))# gt_database/xxxxx.bin
                    db_info ={'name': names[i],'path': db_path,'gt_idx': i,'box3d_lidar': gt_boxes[i],'num_points_in_gt': gt_points.shape[0]}if names[i]in all_db_infos:
                        all_db_infos[names[i]].append(db_info)else:
                        all_db_infos[names[i]]=[db_info]# Output the num of all classes in databasefor k, v in all_db_infos.items():print('Database %s: %d'%(k,len(v)))withopen(db_info_save_path,'wb')as f:
            pickle.dump(all_db_infos, f)@staticmethoddefgenerate_prediction_dicts(batch_dict, pred_dicts, class_names, output_path=None):"""
        Args:
            batch_dict:
                frame_id:
            pred_dicts: list of pred_dicts
                pred_boxes: (N,7), Tensor
                pred_scores: (N), Tensor
                pred_lables: (N), Tensor
            class_names:
            output_path:
        Returns:
        """defget_template_prediction(num_smaples):
            ret_dict ={'name': np.zeros(num_smaples),'alpha': np.zeros(num_smaples),'dimensions': np.zeros([num_smaples,3]),'location': np.zeros([num_smaples,3]),'rotation_y': np.zero(num_smaples),'score': np.zeros(num_smaples),'boxes_lidar': np.zeros([num_smaples,7])}return ret_dict

        defgenerate_single_sample_dict(batch_index, box_dict):
            pred_scores = box_dict['pred_scores'].cpu().numpy()
            pred_boxes = box_dict['pred_boxes'].cpu().numpy()
            pred_labels = box_dict['pred_labels'].cpu().numpy()# Define an empty template dict to store the prediction information, 'pred_scores.shape[0]' means 'num_samples'
            pred_dict = get_template_prediction(pred_scores.shape[0])# If num_samples equals zero then return the empty dictif pred_scores.shape[0]==0:return pred_dict

            # No calibration files

            pred_boxes_camera = box_utils.boxes3d_lidar_to_kitti_camera[pred_boxes]

            pred_dict['name']= np.array(class_names)[pred_labels -1]
            pred_dict['alpha']=-np.arctan2(-pred_boxes[:,1], pred_boxes[:,0])+ pred_boxes_camera[:,6]
            pred_dict['dimensions']= pred_boxes_camera[:,3:6]
            pred_dict['location']= pred_boxes_camera[:,0:3]
            pred_dict['rotation_y']= pred_boxes_camera[:,6]
            pred_dict['score']= pred_scores
            pred_dict['boxes_lidar']= pred_boxes

            return pred_dict

        annos =[]for index, box_dict inenumerate(pred_dicts):
            frame_id = batch_dict['frame_id'][index]

            single_pred_dict = generate_single_sample_dict(index, box_dict)
            single_pred_dict['frame_id']= frame_id
            annos.append(single_pred_dict)# Output pred results to Output-path in .txt file if output_path isnotNone:
                cur_det_file = output_path /('%s.txt'% frame_id)withopen(cur_det_file,'w')as f:
                    bbox = single_pred_dict['bbox']
                    loc = single_pred_dict['location']
                    dims = single_pred_dict['dimensions']# lhw -> hwl: lidar -> camerafor idx inrange(len(bbox)):print('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f'%(single_pred_dict['name'][idx], single_pred_dict['alpha'][idx],
                                bbox[idx][0], bbox[idx][1], bbox[idx][2], bbox[idx][3],
                                dims[idx][1], dims[idx][2], dims[idx][0], loc[idx][0],
                                loc[idx][1], loc[idx][2], single_pred_dict['rotation_y'][idx],
                                single_pred_dict['score'][idx]),file=f)return annos

    def__len__(self):if self._merge_all_iters_to_one_epoch:returnlen(self.sample_id_list)* self.total_epochs

        returnlen(self.custom_infos)def__getitem__(self, index):"""
        Function:
            Read 'velodyne' folder as pointclouds
            Read 'label_2' folder as labels
            Return type 'dict'
        """if self._merge_all_iters_to_one_epoch:
            index = index %len(self.custom_infos)
        
        info = copy.deepcopy(self.custom_infos[index])

        sample_idx = info['point_cloud']['lidar_idx']
        get_item_list = self.dataset_cfg.get('GET_ITEM_LIST',['points'])

        input_dict ={'frame_id': self.sample_id_list[index],}"""
        Here infos was generated by get_infos
        """if'annos'in info:
            annos = info['annos']
            annos = common_utils.drop_info_with_name(annos, name='DontCare')
            loc, dims, rots = annos['location'], annos['dimensions'], annos['rotation_y']
            gt_names = annos['name']
            gt_boxes_lidar = annos['gt_boxes_lidar']if'points'in get_item_list:
            points = self.get_lidar(sample_idx,True)# import time# print(points.shape)# if points.shape[0] == 0:#     print("**********************************")#     print("sample_idx: ", sample_idx)#     time.sleep(999999)#     print("**********************************")# 000099, 000009
            input_dict['points']= points
            input_dict.update({'gt_names': gt_names,'gt_boxes': gt_boxes_lidar
            })

        data_dict = self.prepare_data(data_dict=input_dict)return data_dict

defcreate_custom_infos(dataset_cfg, class_names, data_path, save_path, workers=4):
    dataset = CustomDataset(dataset_cfg=dataset_cfg, class_names=class_names, root_path=data_path, training=False)
    train_split, val_split ='train','val'# No evaluation
    train_filename = save_path /('custom_infos_%s.pkl'% train_split)
    val_filenmae = save_path /('custom_infos%s.pkl'% val_split)
    trainval_filename = save_path /'custom_infos_trainval.pkl'
    test_filename = save_path /'custom_infos_test.pkl'print('------------------------Start to generate data infos------------------------')

    dataset.set_split(train_split)
    custom_infos_train = dataset.get_infos(num_workers=workers, has_label=True, count_inside_pts=True)withopen(train_filename,'wb')as f:
        pickle.dump(custom_infos_train, f)print('Custom info train file is save to %s'% train_filename)

    dataset.set_split('test')
    custom_infos_test = dataset.get_infos(num_workers=workers, has_label=False, count_inside_pts=False)withopen(test_filename,'wb')as f:
        pickle.dump(custom_infos_test, f)print('Custom info test file is saved to %s'% test_filename)print('------------------------Start create groundtruth database for data augmentation------------------------')
    dataset.set_split(train_split)# Input the 'custom_train_info.pkl' to generate gt_database
    dataset.create_groundtruth_database(train_filename, split=train_split)print('------------------------Data preparation done------------------------')if __name__=='__main__':import sys
    if sys.argv.__len__()>1and sys.argv[1]=='create_custom_infos':import yaml
        from pathlib import Path
        from easydict import EasyDict
        dataset_cfg = EasyDict(yaml.safe_load(open(sys.argv[2])))
        ROOT_DIR =(Path(__file__).resolve().parent /'../../../').resolve()
        create_custom_infos(
            dataset_cfg=dataset_cfg,
            class_names=['Car','Pedestrian','Cyclist'],
            data_path=ROOT_DIR /'data'/'custom',
            save_path=ROOT_DIR /'data'/'custom')

新建tools/cfgs/dataset_configs/custom_dataset.yaml并修改

DATASET:'CustomDataset'
DATA_PATH:'../data/custom'# If this config file is modified then pcdet/models/detectors/detector3d_template.py:# Detector3DTemplate::build_networks:model_info_dict needs to be modified.
POINT_CLOUD_RANGE:[-70.4,-40,-3,70.4,40,1]# x=[-70.4, 70.4], y=[-40,40], z=[-3,1]

DATA_SPLIT:{'train': train,'test': val
}

INFO_PATH:{'train':[custom_infos_train.pkl],'test':[custom_infos_val.pkl],}

GET_ITEM_LIST:["points"]
FOV_POINTS_ONLY:True

POINT_FEATURE_ENCODING:{
    encoding_type: absolute_coordinates_encoding,
    used_feature_list:['x','y','z','intensity'],
    src_feature_list:['x','y','z','intensity'],}# Same to pv_rcnn[DATA_AUGMENTOR]
DATA_AUGMENTOR:
    DISABLE_AUG_LIST:['placeholder']
    AUG_CONFIG_LIST:- NAME: gt_sampling
          # Notice that 'USE_ROAD_PLANE'
          USE_ROAD_PLANE:False
          DB_INFO_PATH:- custom_dbinfos_train.pkl # pcdet/datasets/augmentor/database_ampler.py:line 26
          PREPARE:{
             filter_by_min_points:['Car:5','Pedestrian:5','Cyclist:5'],
             filter_by_difficulty:[-1],}

          SAMPLE_GROUPS:['Car:20','Pedestrian:15','Cyclist:15']
          NUM_POINT_FEATURES:4
          DATABASE_WITH_FAKELIDAR:False
          REMOVE_EXTRA_WIDTH:[0.0,0.0,0.0]
          LIMIT_WHOLE_SCENE:True- NAME: random_world_flip
          ALONG_AXIS_LIST:['x']- NAME: random_world_rotation
          WORLD_ROT_ANGLE:[-0.78539816,0.78539816]- NAME: random_world_scaling
          WORLD_SCALE_RANGE:[0.95,1.05]

DATA_PROCESSOR:- NAME: mask_points_and_boxes_outside_range
      REMOVE_OUTSIDE_BOXES:True- NAME: shuffle_points
      SHUFFLE_ENABLED:{'train':True,'test':False}- NAME: transform_points_to_voxels
      VOXEL_SIZE:[0.05,0.05,0.1]
      MAX_POINTS_PER_VOXEL:5
      MAX_NUMBER_OF_VOXELS:{'train':16000,'test':40000}

新建tools/cfgs/custom_models/pointrcnn.yaml并修改

CLASS_NAMES:['Car']# CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']

DATA_CONFIG:
    _BASE_CONFIG_:/home/zonlin/CRLFnet/src/site_model/src/LidCamFusion/OpenPCDet/tools/cfgs/dataset_configs/custom_dataset.yaml
    _BASE_CONFIG_RT_:/home/zonlin/CRLFnet/src/site_model/src/LidCamFusion/OpenPCDet/tools/cfgs/dataset_configs/custom_dataset.yaml

    DATA_PROCESSOR:-   NAME: mask_points_and_boxes_outside_range
            REMOVE_OUTSIDE_BOXES:True-   NAME: sample_points
            NUM_POINTS:{'train':16384,'test':16384}-   NAME: shuffle_points
            SHUFFLE_ENABLED:{'train':True,'test':False}

MODEL:
    NAME: PointRCNN

    BACKBONE_3D:
        NAME: PointNet2MSG
        SA_CONFIG:
            NPOINTS:[4096,1024,256,64]
            RADIUS:[[0.1,0.5],[0.5,1.0],[1.0,2.0],[2.0,4.0]]
            NSAMPLE:[[16,32],[16,32],[16,32],[16,32]]
            MLPS:[[[16,16,32],[32,32,64]],[[64,64,128],[64,96,128]],[[128,196,256],[128,196,256]],[[256,256,512],[256,384,512]]]
        FP_MLPS:[[128,128],[256,256],[512,512],[512,512]]

    POINT_HEAD:
        NAME: PointHeadBox
        CLS_FC:[256,256]
        REG_FC:[256,256]
        CLASS_AGNOSTIC:False
        USE_POINT_FEATURES_BEFORE_FUSION:False
        TARGET_CONFIG:
            GT_EXTRA_WIDTH:[0.2,0.2,0.2]
            BOX_CODER: PointResidualCoder
            BOX_CODER_CONFIG:{'use_mean_size':True,'mean_size':[[3.9,1.6,1.56],[0.8,0.6,1.73],[1.76,0.6,1.73]]}

        LOSS_CONFIG:
            LOSS_REG: WeightedSmoothL1Loss
            LOSS_WEIGHTS:{'point_cls_weight':1.0,'point_box_weight':1.0,'code_weights':[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]}

    ROI_HEAD:
        NAME: PointRCNNHead
        CLASS_AGNOSTIC:True

        ROI_POINT_POOL:
            POOL_EXTRA_WIDTH:[0.0,0.0,0.0]
            NUM_SAMPLED_POINTS:512
            DEPTH_NORMALIZER:70.0

        XYZ_UP_LAYER:[128,128]
        CLS_FC:[256,256]
        REG_FC:[256,256]
        DP_RATIO:0.0
        USE_BN:False

        SA_CONFIG:
            NPOINTS:[128,32,-1]
            RADIUS:[0.2,0.4,100]
            NSAMPLE:[16,16,16]
            MLPS:[[128,128,128],[128,128,256],[256,256,512]]

        NMS_CONFIG:
            TRAIN:
                NMS_TYPE: nms_gpu
                MULTI_CLASSES_NMS:False
                NMS_PRE_MAXSIZE:9000
                NMS_POST_MAXSIZE:512
                NMS_THRESH:0.8
            TEST:
                NMS_TYPE: nms_gpu
                MULTI_CLASSES_NMS:False
                NMS_PRE_MAXSIZE:9000
                NMS_POST_MAXSIZE:100
                NMS_THRESH:0.85

        TARGET_CONFIG:
            BOX_CODER: ResidualCoder
            ROI_PER_IMAGE:128
            FG_RATIO:0.5

            SAMPLE_ROI_BY_EACH_CLASS:True
            CLS_SCORE_TYPE: cls

            CLS_FG_THRESH:0.6
            CLS_BG_THRESH:0.45
            CLS_BG_THRESH_LO:0.1
            HARD_BG_RATIO:0.8

            REG_FG_THRESH:0.55

        LOSS_CONFIG:
            CLS_LOSS: BinaryCrossEntropy
            REG_LOSS: smooth-l1
            CORNER_LOSS_REGULARIZATION:True
            LOSS_WEIGHTS:{'rcnn_cls_weight':1.0,'rcnn_reg_weight':1.0,'rcnn_corner_weight':1.0,'code_weights':[1.0,1.0,1.0,1.0,1.0,1.0,1.0]}

    POST_PROCESSING:
        RECALL_THRESH_LIST:[0.3,0.5,0.7]
        SCORE_THRESH:0.1
        OUTPUT_RAW_SCORE:False

        EVAL_METRIC: kitti

        NMS_CONFIG:
            MULTI_CLASSES_NMS:False
            NMS_TYPE: nms_gpu
            NMS_THRESH:0.1
            NMS_PRE_MAXSIZE:4096
            NMS_POST_MAXSIZE:500

OPTIMIZATION:
    BATCH_SIZE_PER_GPU:2
    NUM_EPOCHS:80

    OPTIMIZER: adam_onecycle
    LR:0.01
    WEIGHT_DECAY:0.01
    MOMENTUM:0.9

    MOMS:[0.95,0.85]
    PCT_START:0.4
    DIV_FACTOR:10
    DECAY_STEP_LIST:[35,45]
    LR_DECAY:0.1
    LR_CLIP:0.0000001

    LR_WARMUP:False
    WARMUP_EPOCH:1

    GRAD_NORM_CLIP:10

其他调整事项

需要对以上文件中的

类别信息

数据集路径

点云范围POINT_CLOUD_RANGE

进行更改

pcdet/datasets/init.py

文件,增加以下代码

from.custom.custom_dataset import CustomDataset
# 在__all__ = 中增加'CustomDataset': CustomDataset

在这里插入图片描述
完成以上就可以开始对数据集进行预处理和训练了

数据集预处理

python -m pcdet.datasets.custom.custom_dataset create_custom_infos tools/cfgs/dataset_configs/custom_dataset.yaml

在这里插入图片描述
同时在

gt_database

文件夹下生成的

.bin

文件,

data/custom文件夹

结构变为如下:

custom
├── ImageSets
│   ├── test.txt
│   ├── train.txt
├── testing
│   ├── velodyne
├── training
│   ├── label_2
│   ├── velodyne
├── gt_database
│   ├── xxxxx.bin
├── custom_infos_train.pkl
├── custom_infos_val.pkl
├── custom_dbinfos_train.pkl

数据集训练

python tools/train.py --cfg_file tools/cfgs/custom_models/pointrcnn.yaml --batch_size=2--epochs=300

在这里插入图片描述

可视化测试

cd

tools

文件夹下,运行:

python demo.py --cfg_file cfgs/custom_models/pointrcnn.yaml  --data_path ../data/custom/testinging/velodyne/--ckpt ../output/custom_models/pointrcnn/default/ckpt/checkpoint_epoch_300.pth

此处根据自己的文件路径进行修改,推理效果如下(笔者标注50多张闸口船舶的点云数据):
在这里插入图片描述
看起来效果还是挺不错。

获取尺寸

OpenPCDet平台下根据kitti格式推理得到的bbox的

dx、dy、dz

就是约等于实际的物体的尺寸。

在这里插入图片描述
对于我们的点云数据而言,上述数据对应船的高宽长。(这里不理解的可以去看下OpenPCDet的坐标定义)


四、总结

至此,基于OpenPCDet平台的自定义数据集的训练基本完成了,这里要特别感谢下树和猫,对于自定义数据集的训练我们交流了很多,之前他是通过我写的yolov5系列文章关注的我,现在我通过OpenPCDet 训练自己的数据集系列关注了他,着实让我感觉到了技术分享是一个圈

参考文档:
https://blog.csdn.net/m0_68312479/article/details/126201450
https://blog.csdn.net/jin15203846657/article/details/122949271
https://blog.csdn.net/hihui1231/article/details/124903276
https://github.com/OrangeSodahub/CRLFnet/tree/master/src/site_model/src/LidCamFusion/OpenPCDet
https://blog.csdn.net/weixin_43464623/article/details/116718451

如果阅读本文对你有用,欢迎一键三连呀!!!
2022年10月24日11:12:53
在这里插入图片描述


本文转载自: https://blog.csdn.net/JulyLi2019/article/details/126351276
版权归原作者 JulyLi2019 所有, 如有侵权,请联系我们删除。

“OpenPCDet 训练自己的数据集详细教程!”的评论:

还没有评论