文章目录
前言
这些天一直在尝试通过OpenPCDet平台训练自己的数据集(非kitti格式),好在最后终于跑通了,特此记录一下训练过程。
一、pcd转bin
笔者自己的点云数据是pcd格式的,参照kitti训练过程是需要转成bin格式的。
下面给出转换代码:
# -*- coding: utf-8 -*- # @Time : 2022/7/25 11:30 # @Author : JulyLi# @File : pcd2bin.pyimport numpy as np
import os
import argparse
from pypcd import pypcd
import csv
from tqdm import tqdm
defmain():## Add parser
parser = argparse.ArgumentParser(description="Convert .pcd to .bin")
parser.add_argument("--pcd_path",help=".pcd file path.",type=str,
default="pcd_raw1")
parser.add_argument("--bin_path",help=".bin file path.",type=str,
default="bin")
parser.add_argument("--file_name",help="File name.",type=str,
default="file_name")
args = parser.parse_args()## Find all pcd files
pcd_files =[]for(path,dir, files)in os.walk(args.pcd_path):for filename in files:# print(filename)
ext = os.path.splitext(filename)[-1]if ext =='.pcd':
pcd_files.append(path +"/"+ filename)## Sort pcd files by file name
pcd_files.sort()print("Finish to load point clouds!")## Make bin_path directorytry:ifnot(os.path.isdir(args.bin_path)):
os.makedirs(os.path.join(args.bin_path))except OSError as e:# if e.errno != errno.EEXIST:# print("Failed to create directory!!!!!")raise## Generate csv meta file
csv_file_path = os.path.join(args.bin_path,"meta.csv")
csv_file =open(csv_file_path,"w")
meta_file = csv.writer(
csv_file, delimiter=",", quotechar="|", quoting=csv.QUOTE_MINIMAL
)## Write csv meta file header
meta_file.writerow(["pcd file name","bin file name",])print("Finish to generate csv meta file")## Converting Processprint("Converting Start!")
seq =0for pcd_file in tqdm(pcd_files):## Get pcd file
pc = pypcd.PointCloud.from_path(pcd_file)## Generate bin file name# bin_file_name = "{}_{:05d}.bin".format(args.file_name, seq)
bin_file_name ="{:05d}.bin".format(seq)
bin_file_path = os.path.join(args.bin_path, bin_file_name)## Get data from pcd (x, y, z, intensity, ring, time)
np_x =(np.array(pc.pc_data['x'], dtype=np.float32)).astype(np.float32)
np_y =(np.array(pc.pc_data['y'], dtype=np.float32)).astype(np.float32)
np_z =(np.array(pc.pc_data['z'], dtype=np.float32)).astype(np.float32)
np_i =(np.array(pc.pc_data['intensity'], dtype=np.float32)).astype(np.float32)/256# np_r = (np.array(pc.pc_data['ring'], dtype=np.float32)).astype(np.float32)# np_t = (np.array(pc.pc_data['time'], dtype=np.float32)).astype(np.float32)## Stack all data
points_32 = np.transpose(np.vstack((np_x, np_y, np_z, np_i)))## Save bin file
points_32.tofile(bin_file_path)## Write csv meta file
meta_file.writerow([os.path.split(pcd_file)[-1], bin_file_name])
seq = seq +1if __name__ =="__main__":
main()
二、labelCloud 工具安装与使用
拉取源码
git clone https://github.com/ch-sa/labelCloud.git
安装依赖
pip install -r requirements.txt
启动程序
python labelCloud.py
启动后出现如下界面:
在
setting
界面按需设置,笔者这里按
kitti
格式生成label数据:
标注完成后会在对应目录下生成标签:
标签内容大致如下:
三、训练
仿写代码
把
pcdet/datasets/kitti文件夹
复制并改名为
pcdet/datasets/custom
,然后把
pcdet/utils/object3d_kitti.py
复制为
pcdet/utils/object3d_custom.py
把
data/kitti文件夹
复制并改名为
data/custom
,然后修改训练信息,结构如下:
custom
├── ImageSets
│ ├── test.txt
│ ├── train.txt
├── testing
│ ├── velodyne
├── training
│ ├── label_2
│ ├── velodyne
对pcdet/datasets/custom/custom_dataset.py进行改写
import copy
import pickle
import os
import numpy as np
from skimage import io
from.import custom_utils
from...ops.roiaware_pool3d import roiaware_pool3d_utils
from...utils import box_utils, common_utils, object3d_custom
from..dataset import DatasetTemplate
classCustomDataset(DatasetTemplate):def__init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None, ext='.bin'):"""
Args:
root_path:
dataset_cfg:
class_names:
training:
logger:
"""super().__init__(
dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger
)
self.split = self.dataset_cfg.DATA_SPLIT[self.mode]
self.root_split_path = os.path.join(self.root_path,('training'if self.split !='test'else'testing'))
split_dir = os.path.join(self.root_path,'ImageSets',(self.split +'.txt'))
self.sample_id_list =[x.strip()for x inopen(split_dir).readlines()]if os.path.exists(split_dir)elseNone
self.custom_infos =[]
self.include_custom_data(self.mode)
self.ext = ext
definclude_custom_data(self, mode):if self.logger isnotNone:
self.logger.info('Loading Custom dataset.')
custom_infos =[]for info_path in self.dataset_cfg.INFO_PATH[mode]:
info_path = self.root_path / info_path
ifnot info_path.exists():continuewithopen(info_path,'rb')as f:
infos = pickle.load(f)
custom_infos.extend(infos)
self.custom_infos.extend(custom_infos)if self.logger isnotNone:
self.logger.info('Total samples for CUSTOM dataset: %d'%(len(custom_infos)))defget_infos(self, num_workers=16, has_label=True, count_inside_pts=True, sample_id_list=None):import concurrent.futures as futures
# Process single scenedefprocess_single_scene(sample_idx):print('%s sample_idx: %s'%(self.split, sample_idx))# define an empty dict
info ={}# pts infos: dimention and idx
pc_info ={'num_features':4,'lidar_idx': sample_idx}# add to pts infos
info['point_cloud']= pc_info
# no images, calibs are need to transform the labels
type_to_id ={'Car':1,'Pedestrian':2,'Cyclist':3}if has_label:# read labels to build object list according to idx
obj_list = self.get_label(sample_idx)# build an empty annotations dict
annotations ={}# add to annotations ==> refer to 'object3d_custom' (no truncated,occluded,alpha,bbox)
annotations['name']= np.array([obj.cls_type for obj in obj_list])# 1-dimension# hwl(camera) format 2-dimension: The kitti-labels are in camera-coord# h,w,l -> 0.21,0.22,0.33 (see object3d_custom.py h=label[8], w=label[9], l=label[10])
annotations['dimensions']= np.array([[obj.l, obj.h, obj.w]for obj in obj_list])
annotations['location']= np.concatenate([obj.loc.reshape(1,3)for obj in obj_list])
annotations['rotation_y']= np.array([obj.ry for obj in obj_list])# 1-dimension
num_objects =len([obj.cls_type for obj in obj_list if obj.cls_type !='DontCare'])
num_gt =len(annotations['name'])
index =list(range(num_objects))+[-1]*(num_gt - num_objects)
annotations['index']= np.array(index, dtype=np.int32)
loc = annotations['location'][:num_objects]
dims = annotations['dimensions'][:num_objects]
rots = annotations['rotation_y'][:num_objects]# camera -> lidar: The points of custom_dataset are already in lidar-coord# But the labels are in camera-coord and need to transform
loc_lidar = self.get_calib(loc)
l, h, w = dims[:,0:1], dims[:,1:2], dims[:,2:3]# bottom center -> object center: no need for loc_lidar[:, 2] += h[:, 0] / 2# print("sample_idx: ", sample_idx, "loc: ", loc, "loc_lidar: " , sample_idx, loc_lidar)# get gt_boxes_lidar see https://zhuanlan.zhihu.com/p/152120636
gt_boxes_lidar = np.concatenate([loc_lidar, l, w, h,(np.pi /2- rots[..., np.newaxis])], axis=1)# 2-dimension array
annotations['gt_boxes_lidar']= gt_boxes_lidar
# add annotation info
info['annos']= annotations
return info
sample_id_list = sample_id_list if sample_id_list isnotNoneelse self.sample_id_list
# create a thread pool to improve the velocitywith futures.ThreadPoolExecutor(num_workers)as executor:
infos = executor.map(process_single_scene, sample_id_list)# infos is a list that each element represents per framereturnlist(infos)defget_calib(self, loc):"""
This calibration is different from the kitti dataset.
The transform formual of labelCloud: ROOT/labelCloud/io/labels/kitti.py: import labels
if self.transformed:
centroid = centroid[2], -centroid[0], centroid[1] - 2.3
dimensions = [float(v) for v in line_elements[8:11]]
if self.transformed:
dimensions = dimensions[2], dimensions[1], dimensions[0]
bbox = BBox(*centroid, *dimensions)
"""
loc_lidar = np.concatenate([np.array((float(loc_obj[2]),float(-loc_obj[0]),float(loc_obj[1]-2.3)), dtype=np.float32).reshape(1,3)for loc_obj in loc])return loc_lidar
defget_label(self, idx):# get labels
label_file = self.root_split_path /'label_2'/('%s.txt'% idx)assert label_file.exists()return object3d_custom.get_objects_from_label(label_file)defget_lidar(self, idx, getitem):"""
Loads point clouds for a sample
Args:
index (int): Index of the point cloud file to get.
Returns:
np.array(N, 4): point cloud.
"""# get lidar statisticsif getitem ==True:
lidar_file = self.root_split_path +'/velodyne/'+('%s.bin'% idx)else:
lidar_file = self.root_split_path /'velodyne'/('%s.bin'% idx)return np.fromfile(str(lidar_file), dtype=np.float32).reshape(-1,4)defset_split(self, split):super().__init__(
dataset_cfg=self.dataset_cfg, class_names=self.class_names, training=self.training, root_path=self.root_path, logger=self.logger
)
self.split = split
self.root_split_path = self.root_path /('training'if self.split !='test'else'testing')
split_dir = self.root_path /'ImageSets'/(self.split +'.txt')
self.sample_id_list =[x.strip()for x inopen(split_dir).readlines()]if split_dir.exists()elseNone# Create gt database for data augmentationdefcreate_groundtruth_database(self, info_path=None, used_classes=None, split='train'):import torch
# Specify the direction
database_save_path = Path(self.root_path)/('gt_database'if split =='train'else('gt_database_%s'% split))
db_info_save_path = Path(self.root_path)/('custom_dbinfos_%s.pkl'% split)
database_save_path.mkdir(parents=True, exist_ok=True)
all_db_infos ={}# Open 'custom_train_info.pkl'withopen(info_path,'rb')as f:
infos = pickle.load(f)# For each .bin filefor k inrange(len(infos)):print('gt_database sample: %d/%d'%(k +1,len(infos)))# Get current scene info
info = infos[k]
sample_idx = info['point_cloud']['lidar_idx']
points = self.get_lidar(sample_idx,False)
annos = info['annos']
names = annos['name']
gt_boxes = annos['gt_boxes_lidar']
num_obj = gt_boxes.shape[0]
point_indices = roiaware_pool3d_utils.points_in_boxes_cpu(
torch.from_numpy(points[:,0:3]), torch.from_numpy(gt_boxes)).numpy()# (nboxes, npoints)for i inrange(num_obj):
filename ='%s_%s_%d.bin'%(sample_idx, names[i], i)
filepath = database_save_path / filename
gt_points = points[point_indices[i]>0]
gt_points[:,:3]-= gt_boxes[i,:3]withopen(filepath,'w')as f:
gt_points.tofile(f)if(used_classes isNone)or names[i]in used_classes:
db_path =str(filepath.relative_to(self.root_path))# gt_database/xxxxx.bin
db_info ={'name': names[i],'path': db_path,'gt_idx': i,'box3d_lidar': gt_boxes[i],'num_points_in_gt': gt_points.shape[0]}if names[i]in all_db_infos:
all_db_infos[names[i]].append(db_info)else:
all_db_infos[names[i]]=[db_info]# Output the num of all classes in databasefor k, v in all_db_infos.items():print('Database %s: %d'%(k,len(v)))withopen(db_info_save_path,'wb')as f:
pickle.dump(all_db_infos, f)@staticmethoddefgenerate_prediction_dicts(batch_dict, pred_dicts, class_names, output_path=None):"""
Args:
batch_dict:
frame_id:
pred_dicts: list of pred_dicts
pred_boxes: (N,7), Tensor
pred_scores: (N), Tensor
pred_lables: (N), Tensor
class_names:
output_path:
Returns:
"""defget_template_prediction(num_smaples):
ret_dict ={'name': np.zeros(num_smaples),'alpha': np.zeros(num_smaples),'dimensions': np.zeros([num_smaples,3]),'location': np.zeros([num_smaples,3]),'rotation_y': np.zero(num_smaples),'score': np.zeros(num_smaples),'boxes_lidar': np.zeros([num_smaples,7])}return ret_dict
defgenerate_single_sample_dict(batch_index, box_dict):
pred_scores = box_dict['pred_scores'].cpu().numpy()
pred_boxes = box_dict['pred_boxes'].cpu().numpy()
pred_labels = box_dict['pred_labels'].cpu().numpy()# Define an empty template dict to store the prediction information, 'pred_scores.shape[0]' means 'num_samples'
pred_dict = get_template_prediction(pred_scores.shape[0])# If num_samples equals zero then return the empty dictif pred_scores.shape[0]==0:return pred_dict
# No calibration files
pred_boxes_camera = box_utils.boxes3d_lidar_to_kitti_camera[pred_boxes]
pred_dict['name']= np.array(class_names)[pred_labels -1]
pred_dict['alpha']=-np.arctan2(-pred_boxes[:,1], pred_boxes[:,0])+ pred_boxes_camera[:,6]
pred_dict['dimensions']= pred_boxes_camera[:,3:6]
pred_dict['location']= pred_boxes_camera[:,0:3]
pred_dict['rotation_y']= pred_boxes_camera[:,6]
pred_dict['score']= pred_scores
pred_dict['boxes_lidar']= pred_boxes
return pred_dict
annos =[]for index, box_dict inenumerate(pred_dicts):
frame_id = batch_dict['frame_id'][index]
single_pred_dict = generate_single_sample_dict(index, box_dict)
single_pred_dict['frame_id']= frame_id
annos.append(single_pred_dict)# Output pred results to Output-path in .txt file if output_path isnotNone:
cur_det_file = output_path /('%s.txt'% frame_id)withopen(cur_det_file,'w')as f:
bbox = single_pred_dict['bbox']
loc = single_pred_dict['location']
dims = single_pred_dict['dimensions']# lhw -> hwl: lidar -> camerafor idx inrange(len(bbox)):print('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f'%(single_pred_dict['name'][idx], single_pred_dict['alpha'][idx],
bbox[idx][0], bbox[idx][1], bbox[idx][2], bbox[idx][3],
dims[idx][1], dims[idx][2], dims[idx][0], loc[idx][0],
loc[idx][1], loc[idx][2], single_pred_dict['rotation_y'][idx],
single_pred_dict['score'][idx]),file=f)return annos
def__len__(self):if self._merge_all_iters_to_one_epoch:returnlen(self.sample_id_list)* self.total_epochs
returnlen(self.custom_infos)def__getitem__(self, index):"""
Function:
Read 'velodyne' folder as pointclouds
Read 'label_2' folder as labels
Return type 'dict'
"""if self._merge_all_iters_to_one_epoch:
index = index %len(self.custom_infos)
info = copy.deepcopy(self.custom_infos[index])
sample_idx = info['point_cloud']['lidar_idx']
get_item_list = self.dataset_cfg.get('GET_ITEM_LIST',['points'])
input_dict ={'frame_id': self.sample_id_list[index],}"""
Here infos was generated by get_infos
"""if'annos'in info:
annos = info['annos']
annos = common_utils.drop_info_with_name(annos, name='DontCare')
loc, dims, rots = annos['location'], annos['dimensions'], annos['rotation_y']
gt_names = annos['name']
gt_boxes_lidar = annos['gt_boxes_lidar']if'points'in get_item_list:
points = self.get_lidar(sample_idx,True)# import time# print(points.shape)# if points.shape[0] == 0:# print("**********************************")# print("sample_idx: ", sample_idx)# time.sleep(999999)# print("**********************************")# 000099, 000009
input_dict['points']= points
input_dict.update({'gt_names': gt_names,'gt_boxes': gt_boxes_lidar
})
data_dict = self.prepare_data(data_dict=input_dict)return data_dict
defcreate_custom_infos(dataset_cfg, class_names, data_path, save_path, workers=4):
dataset = CustomDataset(dataset_cfg=dataset_cfg, class_names=class_names, root_path=data_path, training=False)
train_split, val_split ='train','val'# No evaluation
train_filename = save_path /('custom_infos_%s.pkl'% train_split)
val_filenmae = save_path /('custom_infos%s.pkl'% val_split)
trainval_filename = save_path /'custom_infos_trainval.pkl'
test_filename = save_path /'custom_infos_test.pkl'print('------------------------Start to generate data infos------------------------')
dataset.set_split(train_split)
custom_infos_train = dataset.get_infos(num_workers=workers, has_label=True, count_inside_pts=True)withopen(train_filename,'wb')as f:
pickle.dump(custom_infos_train, f)print('Custom info train file is save to %s'% train_filename)
dataset.set_split('test')
custom_infos_test = dataset.get_infos(num_workers=workers, has_label=False, count_inside_pts=False)withopen(test_filename,'wb')as f:
pickle.dump(custom_infos_test, f)print('Custom info test file is saved to %s'% test_filename)print('------------------------Start create groundtruth database for data augmentation------------------------')
dataset.set_split(train_split)# Input the 'custom_train_info.pkl' to generate gt_database
dataset.create_groundtruth_database(train_filename, split=train_split)print('------------------------Data preparation done------------------------')if __name__=='__main__':import sys
if sys.argv.__len__()>1and sys.argv[1]=='create_custom_infos':import yaml
from pathlib import Path
from easydict import EasyDict
dataset_cfg = EasyDict(yaml.safe_load(open(sys.argv[2])))
ROOT_DIR =(Path(__file__).resolve().parent /'../../../').resolve()
create_custom_infos(
dataset_cfg=dataset_cfg,
class_names=['Car','Pedestrian','Cyclist'],
data_path=ROOT_DIR /'data'/'custom',
save_path=ROOT_DIR /'data'/'custom')
新建tools/cfgs/dataset_configs/custom_dataset.yaml并修改
DATASET:'CustomDataset'
DATA_PATH:'../data/custom'# If this config file is modified then pcdet/models/detectors/detector3d_template.py:# Detector3DTemplate::build_networks:model_info_dict needs to be modified.
POINT_CLOUD_RANGE:[-70.4,-40,-3,70.4,40,1]# x=[-70.4, 70.4], y=[-40,40], z=[-3,1]
DATA_SPLIT:{'train': train,'test': val
}
INFO_PATH:{'train':[custom_infos_train.pkl],'test':[custom_infos_val.pkl],}
GET_ITEM_LIST:["points"]
FOV_POINTS_ONLY:True
POINT_FEATURE_ENCODING:{
encoding_type: absolute_coordinates_encoding,
used_feature_list:['x','y','z','intensity'],
src_feature_list:['x','y','z','intensity'],}# Same to pv_rcnn[DATA_AUGMENTOR]
DATA_AUGMENTOR:
DISABLE_AUG_LIST:['placeholder']
AUG_CONFIG_LIST:- NAME: gt_sampling
# Notice that 'USE_ROAD_PLANE'
USE_ROAD_PLANE:False
DB_INFO_PATH:- custom_dbinfos_train.pkl # pcdet/datasets/augmentor/database_ampler.py:line 26
PREPARE:{
filter_by_min_points:['Car:5','Pedestrian:5','Cyclist:5'],
filter_by_difficulty:[-1],}
SAMPLE_GROUPS:['Car:20','Pedestrian:15','Cyclist:15']
NUM_POINT_FEATURES:4
DATABASE_WITH_FAKELIDAR:False
REMOVE_EXTRA_WIDTH:[0.0,0.0,0.0]
LIMIT_WHOLE_SCENE:True- NAME: random_world_flip
ALONG_AXIS_LIST:['x']- NAME: random_world_rotation
WORLD_ROT_ANGLE:[-0.78539816,0.78539816]- NAME: random_world_scaling
WORLD_SCALE_RANGE:[0.95,1.05]
DATA_PROCESSOR:- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES:True- NAME: shuffle_points
SHUFFLE_ENABLED:{'train':True,'test':False}- NAME: transform_points_to_voxels
VOXEL_SIZE:[0.05,0.05,0.1]
MAX_POINTS_PER_VOXEL:5
MAX_NUMBER_OF_VOXELS:{'train':16000,'test':40000}
新建tools/cfgs/custom_models/pointrcnn.yaml并修改
CLASS_NAMES:['Car']# CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
DATA_CONFIG:
_BASE_CONFIG_:/home/zonlin/CRLFnet/src/site_model/src/LidCamFusion/OpenPCDet/tools/cfgs/dataset_configs/custom_dataset.yaml
_BASE_CONFIG_RT_:/home/zonlin/CRLFnet/src/site_model/src/LidCamFusion/OpenPCDet/tools/cfgs/dataset_configs/custom_dataset.yaml
DATA_PROCESSOR:- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES:True- NAME: sample_points
NUM_POINTS:{'train':16384,'test':16384}- NAME: shuffle_points
SHUFFLE_ENABLED:{'train':True,'test':False}
MODEL:
NAME: PointRCNN
BACKBONE_3D:
NAME: PointNet2MSG
SA_CONFIG:
NPOINTS:[4096,1024,256,64]
RADIUS:[[0.1,0.5],[0.5,1.0],[1.0,2.0],[2.0,4.0]]
NSAMPLE:[[16,32],[16,32],[16,32],[16,32]]
MLPS:[[[16,16,32],[32,32,64]],[[64,64,128],[64,96,128]],[[128,196,256],[128,196,256]],[[256,256,512],[256,384,512]]]
FP_MLPS:[[128,128],[256,256],[512,512],[512,512]]
POINT_HEAD:
NAME: PointHeadBox
CLS_FC:[256,256]
REG_FC:[256,256]
CLASS_AGNOSTIC:False
USE_POINT_FEATURES_BEFORE_FUSION:False
TARGET_CONFIG:
GT_EXTRA_WIDTH:[0.2,0.2,0.2]
BOX_CODER: PointResidualCoder
BOX_CODER_CONFIG:{'use_mean_size':True,'mean_size':[[3.9,1.6,1.56],[0.8,0.6,1.73],[1.76,0.6,1.73]]}
LOSS_CONFIG:
LOSS_REG: WeightedSmoothL1Loss
LOSS_WEIGHTS:{'point_cls_weight':1.0,'point_box_weight':1.0,'code_weights':[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]}
ROI_HEAD:
NAME: PointRCNNHead
CLASS_AGNOSTIC:True
ROI_POINT_POOL:
POOL_EXTRA_WIDTH:[0.0,0.0,0.0]
NUM_SAMPLED_POINTS:512
DEPTH_NORMALIZER:70.0
XYZ_UP_LAYER:[128,128]
CLS_FC:[256,256]
REG_FC:[256,256]
DP_RATIO:0.0
USE_BN:False
SA_CONFIG:
NPOINTS:[128,32,-1]
RADIUS:[0.2,0.4,100]
NSAMPLE:[16,16,16]
MLPS:[[128,128,128],[128,128,256],[256,256,512]]
NMS_CONFIG:
TRAIN:
NMS_TYPE: nms_gpu
MULTI_CLASSES_NMS:False
NMS_PRE_MAXSIZE:9000
NMS_POST_MAXSIZE:512
NMS_THRESH:0.8
TEST:
NMS_TYPE: nms_gpu
MULTI_CLASSES_NMS:False
NMS_PRE_MAXSIZE:9000
NMS_POST_MAXSIZE:100
NMS_THRESH:0.85
TARGET_CONFIG:
BOX_CODER: ResidualCoder
ROI_PER_IMAGE:128
FG_RATIO:0.5
SAMPLE_ROI_BY_EACH_CLASS:True
CLS_SCORE_TYPE: cls
CLS_FG_THRESH:0.6
CLS_BG_THRESH:0.45
CLS_BG_THRESH_LO:0.1
HARD_BG_RATIO:0.8
REG_FG_THRESH:0.55
LOSS_CONFIG:
CLS_LOSS: BinaryCrossEntropy
REG_LOSS: smooth-l1
CORNER_LOSS_REGULARIZATION:True
LOSS_WEIGHTS:{'rcnn_cls_weight':1.0,'rcnn_reg_weight':1.0,'rcnn_corner_weight':1.0,'code_weights':[1.0,1.0,1.0,1.0,1.0,1.0,1.0]}
POST_PROCESSING:
RECALL_THRESH_LIST:[0.3,0.5,0.7]
SCORE_THRESH:0.1
OUTPUT_RAW_SCORE:False
EVAL_METRIC: kitti
NMS_CONFIG:
MULTI_CLASSES_NMS:False
NMS_TYPE: nms_gpu
NMS_THRESH:0.1
NMS_PRE_MAXSIZE:4096
NMS_POST_MAXSIZE:500
OPTIMIZATION:
BATCH_SIZE_PER_GPU:2
NUM_EPOCHS:80
OPTIMIZER: adam_onecycle
LR:0.01
WEIGHT_DECAY:0.01
MOMENTUM:0.9
MOMS:[0.95,0.85]
PCT_START:0.4
DIV_FACTOR:10
DECAY_STEP_LIST:[35,45]
LR_DECAY:0.1
LR_CLIP:0.0000001
LR_WARMUP:False
WARMUP_EPOCH:1
GRAD_NORM_CLIP:10
其他调整事项
需要对以上文件中的
类别信息
,
数据集路径
,
点云范围POINT_CLOUD_RANGE
进行更改
在
pcdet/datasets/init.py
文件,增加以下代码
from.custom.custom_dataset import CustomDataset
# 在__all__ = 中增加'CustomDataset': CustomDataset
完成以上就可以开始对数据集进行预处理和训练了
数据集预处理
python -m pcdet.datasets.custom.custom_dataset create_custom_infos tools/cfgs/dataset_configs/custom_dataset.yaml
同时在
gt_database
文件夹下生成的
.bin
文件,
data/custom文件夹
结构变为如下:
custom
├── ImageSets
│ ├── test.txt
│ ├── train.txt
├── testing
│ ├── velodyne
├── training
│ ├── label_2
│ ├── velodyne
├── gt_database
│ ├── xxxxx.bin
├── custom_infos_train.pkl
├── custom_infos_val.pkl
├── custom_dbinfos_train.pkl
数据集训练
python tools/train.py --cfg_file tools/cfgs/custom_models/pointrcnn.yaml --batch_size=2--epochs=300
可视化测试
cd
到
tools
文件夹下,运行:
python demo.py --cfg_file cfgs/custom_models/pointrcnn.yaml --data_path ../data/custom/testinging/velodyne/--ckpt ../output/custom_models/pointrcnn/default/ckpt/checkpoint_epoch_300.pth
此处根据自己的文件路径进行修改,推理效果如下(笔者标注50多张闸口船舶的点云数据):
看起来效果还是挺不错。
获取尺寸
OpenPCDet平台下根据kitti格式推理得到的bbox的
dx、dy、dz
就是约等于实际的物体的尺寸。
对于我们的点云数据而言,上述数据对应船的高宽长。(这里不理解的可以去看下OpenPCDet的坐标定义)
四、总结
至此,基于OpenPCDet平台的自定义数据集的训练基本完成了,这里要特别感谢下树和猫,对于自定义数据集的训练我们交流了很多,之前他是通过我写的yolov5系列文章关注的我,现在我通过OpenPCDet 训练自己的数据集系列关注了他,着实让我感觉到了技术分享是一个圈。
参考文档:
https://blog.csdn.net/m0_68312479/article/details/126201450
https://blog.csdn.net/jin15203846657/article/details/122949271
https://blog.csdn.net/hihui1231/article/details/124903276
https://github.com/OrangeSodahub/CRLFnet/tree/master/src/site_model/src/LidCamFusion/OpenPCDet
https://blog.csdn.net/weixin_43464623/article/details/116718451
如果阅读本文对你有用,欢迎一键三连呀!!!
2022年10月24日11:12:53
版权归原作者 JulyLi2019 所有, 如有侵权,请联系我们删除。