0


Flink JobGraph构建过程

文章目录


前言

在StreamGraph构建过程中分析了StreamGraph的构建过程,在StreamGraph构建完毕之后会对StreamGraph进行优化构建JobGraph,然后再提交JobGraph。优化过程中,Flink会尝试将尽可能多的StreamNode聚合在一个JobGraph节点中,通过合并创建JobVertex,并生成JobEdge,以减少数据在不同节点之间流动所产生的序列化、反序列化、网络传输的开销。它包含的主要抽象概念有:

1、JobVertex:经过优化后符合条件的多个 StreamNode 可能会 chain 在一起生成一个JobVertex,即一个JobVertex 包含一个或多个 operator,JobVertex 的输入是 JobEdge,输出是IntermediateDataSet。

2、IntermediateDataSet:表示 JobVertex 的输出,即经过 operator 处理产生的数据集。producer 是JobVertex,consumer 是 JobEdge。

3、JobEdge:代表了job graph中的一条数据传输通道。source是IntermediateDataSet,target是 JobVertex。即数据通过JobEdge由IntermediateDataSet传递给目标JobVertex。
在这里插入图片描述


JobGraph创建的过程

AbstractJobClusterExecutor.execute ->PipelineExecutorUtils.getJobGraph  ->PipelineTranslator.translateToJobGraph ->StreamGraphTranslator.translateToJobGraph
 ->StreamGraph.getJobGraph ->StreamingJobGraphGenerator.createJobGraph

createJobGraph()函数

privateJobGraphcreateJobGraph(){preValidate();
        jobGraph.setJobType(streamGraph.getJobType());

        jobGraph.enableApproximateLocalRecovery(
                streamGraph.getCheckpointConfig().isApproximateLocalRecoveryEnabled());// 为节点生成确定性哈希,以便在提交时识别它们(如果它们没有更改)。.Map<Integer,byte[]> hashes =
                defaultStreamGraphHasher.traverseStreamGraphAndGenerateHashes(streamGraph);// Generate legacy version hashes for backwards compatibilityList<Map<Integer,byte[]>> legacyHashes =newArrayList<>(legacyStreamGraphHashers.size());for(StreamGraphHasher hasher : legacyStreamGraphHashers){
            legacyHashes.add(hasher.traverseStreamGraphAndGenerateHashes(streamGraph));}setChaining(hashes, legacyHashes);setPhysicalEdges();markContainsSourcesOrSinks();setSlotSharingAndCoLocation();setManagedMemoryFraction(Collections.unmodifiableMap(jobVertices),Collections.unmodifiableMap(vertexConfigs),Collections.unmodifiableMap(chainedConfigs),
                id -> streamGraph.getStreamNode(id).getManagedMemoryOperatorScopeUseCaseWeights(),
                id -> streamGraph.getStreamNode(id).getManagedMemorySlotScopeUseCases());configureCheckpointing();

        jobGraph.setSavepointRestoreSettings(streamGraph.getSavepointRestoreSettings());finalMap<String,DistributedCache.DistributedCacheEntry> distributedCacheEntries =JobGraphUtils.prepareUserArtifactEntries(
                        streamGraph.getUserArtifacts().stream().collect(Collectors.toMap(e -> e.f0, e -> e.f1)),
                        jobGraph.getJobID());for(Map.Entry<String,DistributedCache.DistributedCacheEntry> entry :
                distributedCacheEntries.entrySet()){
            jobGraph.addUserArtifact(entry.getKey(), entry.getValue());}// 在最后完成ExecutionConfig时设置它try{
            jobGraph.setExecutionConfig(streamGraph.getExecutionConfig());}catch(IOException e){}

        jobGraph.setChangelogStateBackendEnabled(streamGraph.isChangelogStateBackendEnabled());addVertexIndexPrefixInVertexName();setVertexDescription();// Wait for the serialization of operator coordinators and stream config.try{FutureUtils.combineAll(
                            vertexConfigs.values().stream().map(
                                            config ->
                                                    config.triggerSerializationAndReturnFuture(
                                                            serializationExecutor)).collect(Collectors.toList())).get();waitForSerializationFuturesAndUpdateJobVertices();}catch(Exception e){thrownewFlinkRuntimeException("Error in serialization.", e);}if(!streamGraph.getJobStatusHooks().isEmpty()){
            jobGraph.setJobStatusHooks(streamGraph.getJobStatusHooks());}return jobGraph;}

在 StreamGraph 构建 JobGragh 的过程中,最重要的事情就是 operator 的 chain 优化,那么到底什
么样的情况的下 Operator 能chain 在一起呢?

// 1、下游节点的入度为1 (也就是说下游节点没有来自其他节点的输入)
downStreamVertex.getInEdges().size()==1;// 2、上下游节点都在同一个 slot group 中
upStreamVertex.isSameSlotSharingGroup(downStreamVertex);// 3、前后算子不为空!(downStreamOperator ==null|| upStreamOperator ==null);// 4、上游节点的 chain 策略为 ALWAYS 或 HEAD(只能与下游链接,不能与上游链接,Source 默认
是 HEAD)
!upStreamOperator.getChainingStrategy()==ChainingStrategy.NEVER;// 5、下游节点的 chain 策略为 ALWAYS(可以与上下游链接,map、flatmap、filter 等默认是ALWAYS)
!downStreamOperator.getChainingStrategy()!=ChainingStrategy.ALWAYS;// 6、两个节点间物理分区逻辑是 ForwardPartitioner(edge.getPartitioner()instanceofForwardPartitioner);// 7、两个算子间的shuffle方式不等于批处理模式
edge.getShuffleMode()!=ShuffleMode.BATCH;// 8、上下游的并行度一致
upStreamVertex.getParallelism()== downStreamVertex.getParallelism();// 9、用户没有禁用 chain
streamGraph.isChainingEnabled();

构造边

privatevoidconnect(Integer headOfChain,StreamEdge edge,NonChainedOutput output){

        physicalEdgesInOrder.add(edge);Integer downStreamVertexID = edge.getTargetId();JobVertex headVertex = jobVertices.get(headOfChain);JobVertex downStreamVertex = jobVertices.get(downStreamVertexID);StreamConfig downStreamConfig =newStreamConfig(downStreamVertex.getConfiguration());

        downStreamConfig.setNumberOfNetworkInputs(downStreamConfig.getNumberOfNetworkInputs()+1);StreamPartitioner<?> partitioner = output.getPartitioner();ResultPartitionType resultPartitionType = output.getPartitionType();if(resultPartitionType ==ResultPartitionType.HYBRID_FULL|| resultPartitionType ==ResultPartitionType.HYBRID_SELECTIVE){
            hasHybridResultPartition =true;}checkBufferTimeout(resultPartitionType, edge);JobEdge jobEdge;if(partitioner.isPointwise()){
            jobEdge =
                    downStreamVertex.connectNewDataSetAsInput(
                            headVertex,DistributionPattern.POINTWISE,
                            resultPartitionType,
                            opIntermediateOutputs.get(edge.getSourceId()).get(edge).getDataSetId(),
                            partitioner.isBroadcast());}else{
            jobEdge =
                    downStreamVertex.connectNewDataSetAsInput(
                            headVertex,DistributionPattern.ALL_TO_ALL,
                            resultPartitionType,
                            opIntermediateOutputs.get(edge.getSourceId()).get(edge).getDataSetId(),
                            partitioner.isBroadcast());}// set strategy name so that web interface can show it.
        jobEdge.setShipStrategyName(partitioner.toString());
        jobEdge.setForward(partitioner instanceofForwardPartitioner);
        jobEdge.setDownstreamSubtaskStateMapper(partitioner.getDownstreamSubtaskStateMapper());
        jobEdge.setUpstreamSubtaskStateMapper(partitioner.getUpstreamSubtaskStateMapper());if(LOG.isDebugEnabled()){LOG.debug("CONNECTED: {} - {} -> {}",
                    partitioner.getClass().getSimpleName(),
                    headOfChain,
                    downStreamVertexID);}}

总结

1、在StreamGraph构建完毕之后会开始构建JobGraph,然后再提交JobGraph。

2、StreamingJobGraphGenerator.createJobGraph()是构建JobGraph的核心实现,实现中首先会广度优先遍历StreamGraph,为其中的每个StreamNode生成一个Hash值,如果用户设置了operator的uid,那么就根据uid来生成Hash值,否则系统会自己为每个StreamNode生成一个Hash值。如果用户自己为operator提供了Hash值,也会拿来用。生成Hash值的作用主要应用在从checkpoint中的数据恢复

3、在生成Hash值之后,会调用setChaining()方法,创建operator chain、构建JobGraph顶点JobVertex、边JobEdge、中间结果集IntermediateDataSet的核心方法。

1)、创建StreamNode chain(operator chain)

从source开始,处理出边StreamEdge和target节点(edge的下游节点),递归的向下处理StreamEdge上和target StreamNode,直到找到那条过渡边,即不能再进行chain的那条边为止。那么这中间的StreamNode可以作为一个chain。这种递归向下的方式使得程序先chain完StreamGraph后面的节点,再处理头结点,类似于后序递归遍历。

2)、创建顶点JobVertex

顶点的创建在创建StreamNode chain的过程中,当已经完成了一个StreamNode chain的创建,在处理这个chain的头结点时会创建顶点JobVertex,顶点的JobVertexID根据头结点的Hash值而决定。同时JobVertex持有了chain上的所有operatorID。因为是后续遍历,所有JobVertex的创建过程是从后往前进行创建,即从sink端到source端

3)、创建边JobEdge和IntermediateDataSet

JobEdge的创建是在完成一个StreamNode chain,在处理头结点并创建完顶点JobVertex之后、根据头结点和过渡边进行connect操作时进行的,连接的是当前的JobVertex和下游的JobVertex,因为JobVertex的创建是由下至上的。

根据头结点和边从jobVertices中找到对应的JobGraph的上下游顶点JobVertex,获取过渡边的分区器,创建对应的中间结果集IntermediateDataSet和JobEdge。IntermediateDataSet由上游的顶点JobVertex创建,上游顶点JobVertex作为它的生产者producer,IntermediateDataSet作为上游顶点的输出。JobEdge中持有了中间结果集IntermediateDataSet和下游的顶点JobVertex的引用, JobEdge作为中间结果集IntermediateDataSet的消费者,JobEdge作为下游顶点JobVertex的input。整个过程就是
上游JobVertex——>IntermediateDataSet——>JobEdge——>下游JobVertex

4、接下来就是为顶点设置共享solt组、设置checkpoint配置等操作了,最后返回JobGraph,JobGraph的构建就完毕了

标签: flink JobGraph

本文转载自: https://blog.csdn.net/gwc791224/article/details/136497859
版权归原作者 shandongwill 所有, 如有侵权,请联系我们删除。

“Flink JobGraph构建过程”的评论:

还没有评论