个人主页 : 个人主页
个人专栏 : 《数据结构》 《C语言》《C++》《Linux》
文章目录
前言
本文是对于线程概念的知识总结
一、线程的概念
在课本上,线程是比进程更轻量级的一种指向流 或 线程是在进程内部执行的一种执行流。
我们再提出两个理解,线程是CPU调度的基本单位 / 进程是承担系统资源的基本实体。
先记住上面的结论
我们知道,进程 = 内核数据结构 + 代码和数据构成的。
CPU要调度进程,就要有运行队列,而运行队列中排队的就是pcb。CPU通过这些pcb,找到对应的地址空间,进而通过地址空间中的虚拟地址,在页表中映射物理地址,从而找到对应的代码和数据。那么,我们是不是可以将地址空间理解为进程的资源窗口,毕竟进程想要访问正文代码,数据,new和malloc的空间,共享库,栈上的临时数据,命令行参数和环境变量等都是通过地址空间来进行的。
那么,我们如果要创建进程,就要创建对应的pcb,地址空间,将磁盘中的代码和数据加载进内存,再将地址空间中的虚拟地址与物理地址映射构成页表,打开stdin,stdout,stderr构建文件资源描述表,初始化信号处理过程等,这样看来进程创建的成本还挺高的。那为了减少成本,我们能不能在进程内部,再创建多个pcb指向该进程的地址空间,将代码分成多个,并将私有的数据,使每个pcb各自私有一份,可以共享的数据就共享。当CPU来调度其中一个pcb时,其只会运行该进程的一部分代码和一部分数据。我们就可以将这种比以往进程更轻(创建成本)的东西,称为线程。
在linux程序员看来,描述线程的结构体(TCB Thread control block ) 中属性在pcb中都有。那如果我们把pcb来充当tcb,我们就可以把进程调度,切换的代码在线程级别复用起来,而不用再单独设计线程。也就说,以后再创建线程,只需要创建pcb,然后指向同一个进程地址空间,线程的管理就可以复用进程的管理代码。这就是linux中线程的实现方案。
那就有一个问题,在CPU看来,一个pcb到底是进程还是线程,或者说CPU要不要区分一个pcb是进程还是线程。答案很明显,CPU不需要区分进程和线程,CPU只需要根据pcb的地址空间来执行代码即可。也就是现在CPU拿到一个pcb,其执行流是小于等于进程的(当该进程内有多个pcb,其执行流小于进程;当该进程只有一个pcb,其执行流等于该进程)。那现在什么是进程?进程 = 该进程的所有pcb + 地址空间 + 页表 + 代码和数据。与以往进程的区别就是,现在进程内部有多个执行流,以前进程内部只有一个执行流。
红色框内的所有东西之和就是进程。
现在我们就可以理解进程是承担分配系统资源的基本实体,线程是参与资源分配。进程创建要申请系统资源,来创建一个pcb,地址空间,页表,代码和数据,线程创建就是创建一个pcb来分配该进程内部的资源(划分地址空间)。实际上,在linux中并没有真正意义的线程,只是用进程的数据结构来模拟的线程。这种描述执行流的pcb就是轻量级进程(LWP light wigth process 执行流小于等于进程)。那以后,CPU调度就不再是进程,而是一个一个的轻量级进程(pcb),也就是线程是CPU调度的基本单位。
线程比进程更轻量化的原因
- 线程创建销毁更简单,线程只需创建销毁一个pcb来参与资源的分配,而进程创建销毁不仅仅只需要一个pcb
- 线程在地址空间中运行
- 线程调度更简单;在同一进程内,线程之间切换是不需要更改地址空间和页表,只需要将运行中产生的临时数据进行切换即可,也就是只需切换少量的上下文数据。但这不是主要原因,在cpu内有一个大的存储空间cache用来进行数据的缓存(热数据),cache在缓存中是以进程为单位的,那理论上,线程做切换,就不需要切换cache,着就是线程切换更简单。因为有局部性原理(如当前访问的代码附近的代码,有可能是下次要访问的代码)给预加载机制,提供理论基础,
线程代码的简单示例
经过上面的描述,我们已经对线程有了一定的理解,下面就让我们在代码层面上来看看。
#include<iostream>#include<pthread.h>#include<unistd.h>#include<sys/types.h>// 新线程void*ThreadRountine(void*arg){constchar*threadname =(constchar*)arg;while(true){
std::cout <<"I am a new thread: "<< threadname <<", pid: "<<getpid()<< std::endl;sleep(1);}}intmain(){
pthread_t tid;pthread_create(&tid,nullptr, ThreadRountine,(void*)"thread 1");// 主线程while(true){
std::cout <<"I am main thread"<<", pid: "<<getpid()<<std::endl;sleep(1);}return0;}
上面代码,我们创建了一个新线程,并让主线程和新线程都执行死循环。
不出所料,只有一个进程在执行,主线程和新线程都在执行,并且pid相同(在同一个进程内)。那如何查看线程呢? ps -aL查看。
果然有两个线程,其中主线程的LWP 和 PID是相同的。在操作系统中,是通过LWP来识别不同的轻量级进程的。
#include<iostream>#include<pthread.h>#include<unistd.h>#include<sys/types.h>int gnt =100;// 新线程void*ThreadRountine(void*arg){constchar*threadname =(constchar*)arg;while(true){
std::cout <<"I am a new thread: "<< threadname <<", gnt = "<< gnt <<", &gnt"<<&gnt << std::endl;
gnt--;sleep(1);}}intmain(){
pthread_t tid;pthread_create(&tid,nullptr, ThreadRountine,(void*)"thread 1");// 主线程while(true){
std::cout <<"I am main thread"<<", gnt = "<< gnt <<", &gnt"<<&gnt <<std::endl;sleep(1);}return0;}
上述代码,我们创建了两个线程,其中新线程式gnt–,两个线程都打印gnt的值和地址。
可以发现两个线程共享全局变量gnt。
总结
以上就是我对于线程概念的理解和知识总结。
版权归原作者 水月梦镜花 所有, 如有侵权,请联系我们删除。