0


Pytorch实现中药材(中草药)分类识别(含训练代码和数据集)

Pytorch实现中药材(中草药)分类识别(含训练代码和数据集)



1. 前言

基于人工智能的中药材(中草药)识别方法,能够帮助我们快速认知中草药的名称,对中草药科普等研究方面具有重大的意义。本项目将采用深度学习的方法,搭建一个中药材(中草药)AI识别系统。 整套项目包含训练代码和测试代码,以及配套的中药材(中草药)数据集;基于该项目,你可以快速训练一个中草药分类识别模型。项目源码支持模型有resnet18,resnet34,resnet50, mobilenet_v2以及googlenet等常见的深度学习模型,用户可自定义进行训练;准确率还挺高的,采用resnet18模型的*中药材(中草药)*识别准确率也可以高达98.47%左右,满足业务性能需求。
模型
*input size
Test准确率*mobilenet_v2**224×22484.4500%googlenet224×22498.4200%resnet18224×22498.4700%

【源码下载】Pytorch实现中药材(中草药)分类识别(含训练代码和数据集)

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/129880963


2. 中药材(中草药)数据集说明

(1)中药材(中草药)数据集:Chinese-Medicine-163

目前,已经收集了一个中草药(中药材)数据集Chinese-Medicine-163,共有收集了163种中草药(中药材)的图片数据,分为两个子集:训练集(Train)和测试集(Test);其中训练集(Train)总数超过25万,平均每个种类约1575张图片,测试集(Test)总数1万,平均每个种类约61张图片,所有照片都已经按照其所属类别存放于各自的文件夹下,可直接用于深度学习分类模型训练。

关于中草药(中药材)数据集Chinese-Medicine-163说明请参考文章:https://blog.csdn.net/guyuealian/article/details/129883396

(2)自定义数据集

如果需要新增类别数据,或者需要自定数据集进行训练,可以如下进行处理:

  • Train和Test数据集,要求相同类别的图片,放在同一个文件夹下;且子目录文件夹命名为类别名称,如

  • 类别文件:一行一个列表: class_name.txt (最后一行,请多回车一行)
A
B
C
D
  • 修改配置文件的数据路径:config.yaml
train_data: # 可添加多个数据集
  - 'data/dataset/train1' 
  - 'data/dataset/train2'
test_data: 'data/dataset/test'
class_name: 'data/dataset/class_name.txt'
...
...

3. 中草药分类识别模型训练

本项目以中草药(中药材)数据集Chinese-Medicine-163为训练样本,

(1)项目安装

整套工程基本框架结构如下:

.
├── classifier                 # 训练模型相关工具
├── configs                    # 训练配置文件
├── data                       # 训练数据
├── libs           
├── demo.py              # 模型推理demo
├── README.md            # 项目工程说明文档
├── requirements.txt     # 项目相关依赖包
└── train.py             # 训练文件

项目依赖python包请参考requirements.txt,使用pip安装即可:

numpy==1.16.3
matplotlib==3.1.0
Pillow==6.0.0
easydict==1.9
opencv-contrib-python==4.5.2.52
opencv-python==4.5.1.48
pandas==1.1.5
PyYAML==5.3.1
scikit-image==0.17.2
scikit-learn==0.24.0
scipy==1.5.4
seaborn==0.11.2
tensorboard==2.5.0
tensorboardX==2.1
torch==1.7.1+cu110
torchvision==0.8.2+cu110
tqdm==4.55.1
xmltodict==0.12.0
basetrainer
pybaseutils==0.6.5

项目安装教程请参考(初学者入门,麻烦先看完下面教程,配置好开发环境):

  • 项目开发使用教程和常见问题和解决方法
  • 视频教程:1 手把手教你安装CUDA和cuDNN(1)
  • 视频教程:2 手把手教你安装CUDA和cuDNN(2)
  • 视频教程:3 如何用Anaconda创建pycharm环境
  • 视频教程:4 如何在pycharm中使用Anaconda创建的python环境

(2)准备Train和Test数据

下载中药材(中草药)数据集:Chinese-Medicine-163,Train和Test数据集,要求相同类别的图片,放在同一个文件夹下;且子目录文件夹命名为类别名称。

数据增强方式主要采用:** 随机裁剪,随机翻转,随机旋转,颜色变换**等处理方式

import numbers
import random
import PIL.Image as Image
import numpy as np
from torchvision import transforms

def image_transform(input_size, rgb_mean=[0.5, 0.5, 0.5], rgb_std=[0.5, 0.5, 0.5], trans_type="train"):
    """
    不推荐使用:RandomResizedCrop(input_size), # bug:目标容易被crop掉
    :param input_size: [w,h]
    :param rgb_mean:
    :param rgb_std:
    :param trans_type:
    :return::
    """
    if trans_type == "train":
        transform = transforms.Compose([
            transforms.Resize([int(128 * input_size[1] / 112), int(128 * input_size[0] / 112)]),
            transforms.RandomHorizontalFlip(),  # 随机左右翻转
            # transforms.RandomVerticalFlip(), # 随机上下翻转
            transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1),
            transforms.RandomRotation(degrees=5),
            transforms.RandomCrop([input_size[1], input_size[0]]),
            transforms.ToTensor(),
            transforms.Normalize(mean=rgb_mean, std=rgb_std),
        ])
    elif trans_type == "val" or trans_type == "test":
        transform = transforms.Compose([
            transforms.Resize([input_size[1], input_size[0]]),
            # transforms.CenterCrop([input_size[1], input_size[0]]),
            # transforms.Resize(input_size),
            transforms.ToTensor(),
            transforms.Normalize(mean=rgb_mean, std=rgb_std),
        ])
    else:
        raise Exception("transform_type ERROR:{}".format(trans_type))
    return transform

修改配置文件数据路径:config.yaml

# 训练数据集,可支持多个数据集
train_data:
  - '/path/to/Chinese-Medicine-163/train'
# 测试数据集
test_data: '/path/to/Chinese-Medicine-163/test'
# 类别文件
class_name: '/path/to/Chinese-Medicine-163/class_names.txt'

(3)配置文件: config.yaml

  • 目前支持的backbone有:googlenet,resnet[18,34,50],inception_v3,mobilenet_v2等, 其他backbone可以自定义添加
  • 训练参数可以通过(configs/config.yaml)配置文件进行设置

配置文件config.yaml说明如下:

# 训练数据集,可支持多个数据集
train_data:
  - '/path/to/Chinese-Medicine-163/train'
# 测试数据集
test_data: '/path/to/Chinese-Medicine-163/test'
# 类别文件
class_name: '/path/to/Chinese-Medicine-163/class_name.txt'
train_transform: "train"       # 训练使用的数据增强方法
test_transform: "val"          # 测试使用的数据增强方法
work_dir: "work_space/"        # 保存输出模型的目录
net_type: "resnet18"           # 骨干网络,支持:resnet18/50,mobilenet_v2,googlenet,inception_v3
width_mult: 1.0
input_size: [ 224,224 ]        # 模型输入大小
rgb_mean: [ 0.5, 0.5, 0.5 ]    # for normalize inputs to [-1, 1],Sequence of means for each channel.
rgb_std: [ 0.5, 0.5, 0.5 ]     # for normalize,Sequence of standard deviations for each channel.
batch_size: 32
lr: 0.01                       # 初始学习率
optim_type: "SGD"              # 选择优化器,SGD,Adam
loss_type: "CrossEntropyLoss"  # 选择损失函数:支持CrossEntropyLoss,LabelSmoothing
momentum: 0.9                  # SGD momentum
num_epochs: 100                # 训练循环次数
num_warn_up: 3                 # warn-up次数
num_workers: 8                 # 加载数据工作进程数
weight_decay: 0.0005           # weight_decay,默认5e-4
scheduler: "multi-step"        # 学习率调整策略
milestones: [ 20,50,80 ]       # 下调学习率方式
gpu_id: [ 0 ]                  # GPU ID
log_freq: 50                   # LOG打印频率
progress: True                 # 是否显示进度条
pretrained: False              # 是否使用pretrained模型
finetune: False                # 是否进行finetune

参数类型参考值说明train_datastr, list-训练数据文件,可支持多个文件test_datastr, list-测试数据文件,可支持多个文件class_namestr-类别文件work_dirstrwork_space训练输出工作空间net_typestrresnet18

backbone类型,{resnet18/50,mobilenet_v2,googlenet,inception_v3}

input_sizelist[128,128]模型输入大小[W,H]batch_sizeint32batch sizelrfloat0.1初始学习率大小optim_typestrSGD优化器,{SGD,Adam}loss_typestrCELoss损失函数schedulerstrmulti-step学习率调整策略,{multi-step,cosine}milestoneslist[30,80,100]降低学习率的节点,仅仅scheduler=multi-step有效momentumfloat0.9SGD动量因子num_epochsint120循环训练的次数num_warn_upint3warn_up的次数num_workersint12DataLoader开启线程数weight_decayfloat5e-4权重衰减系数gpu_idlist[ 0 ]指定训练的GPU卡号,可指定多个log_freqin20显示LOG信息的频率finetunestrmodel.pthfinetune的模型progressboolTrue是否显示进度条distributedboolFalse是否使用分布式训练

(4)开始训练

整套训练代码非常简单操作,用户只需要将相同类别的数据放在同一个目录下,并填写好对应的数据路径,即可开始训练了。

终端输入:

python train.py -c configs/config.yaml 

(5)可视化训练过程

训练过程可视化工具是使用Tensorboard,使用方法,在终端输入:

使用教程,请参考:项目开发使用教程和常见问题和解决方法

# 基本方法
tensorboard --logdir=path/to/log/
# 例如
tensorboard --logdir=work_space/resnet18_1.0_CrossEntropyLoss_20230404151914/log

可视化效果

(6)一些优化建议

训练完成后,训练集的Accuracy在99.%以上,测试集的Accuracy在98.5%左右,下表给出已经训练好的三个模型,其中mobilenet_v2的准确率可以达到84.4500%,googlenet的准确率可以达到98.4200%,resnet18的准确率可以达到98.4700%
模型input sizeTest准确率****mobilenet_v2224×22484.4500%googlenet224×22498.4200%resnet18224×22498.4700%
如果想进一步提高准确率,可以尝试:

  1. 增加样本数据: 可以采集更多的样本数据,提高模型泛化能力
  2. 减少种类:中草药数据集共有163种类,可以剔除部分不常见的种类
  3. 数据清洗数据:中草药数据集,部分数据是通过网上爬取的,存在部分错误的图片,尽管鄙人已经清洗一部分了,但还是建议你,训练前,再次清洗数据集,不然会影响模型的识别的准确率。
  4. 使用不同backbone模型,比如resnet50或者更深的模型
  5. 增加数据增强: 已经支持:** 随机裁剪,随机翻转,随机旋转,颜色变换等数据增强方式,可以尝试诸如mixup,CutMix**等更复杂的数据增强方式
  6. 样本均衡: 建议进行样本均衡处理
  7. 调超参: 比如学习率调整策略,优化器(SGD,Adam等)
  8. 损失函数: 目前训练代码已经支持:交叉熵,LabelSmoothing,可以尝试FocalLoss等损失函数

(7) 一些运行错误处理方法:

  • cannot import name 'load_state_dict_from_url'

由于一些版本升级,会导致部分接口函数不能使用,请确保版本对应

torch==1.7.1

torchvision==0.8.2

或者将对应python文件将

from torchvision.models.resnet import model_urls, load_state_dict_from_url

修改为:

from torch.hub import load_state_dict_from_url
model_urls = {
    'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}

4. 中草药分类识别模型测试效果

demo.py文件用于推理和测试模型的效果,填写好配置文件,模型文件以及测试图片即可运行测试了

def get_parser():
    # 配置文件
    config_file = "data/pretrained/resnet18_1.0_CrossEntropyLoss_20230404151914/config.yaml"
    # 模型文件
    model_file = "data/pretrained/resnet18_1.0_CrossEntropyLoss_20230404151914/model/best_model_116_98.4700.pth"
    # 待测试图片目录
    image_dir = "data/test_images"
    parser = argparse.ArgumentParser(description="Inference Argument")
    parser.add_argument("-c", "--config_file", help="configs file", default=config_file, type=str)
    parser.add_argument("-m", "--model_file", help="model_file", default=model_file, type=str)
    parser.add_argument("--device", help="cuda device id", default="cuda:0", type=str)
    parser.add_argument("--image_dir", help="image file or directory", default=image_dir, type=str)
    return parser
#!/usr/bin/env bash
# Usage:
# python demo.py  -c "path/to/config.yaml" -m "path/to/model.pth" --image_dir "path/to/image_dir"

# 配置文件
config_file="data/pretrained/resnet18_1.0_CrossEntropyLoss_20230404151914/config.yaml"
# 模型文件
model_file="data/pretrained/resnet18_1.0_CrossEntropyLoss_20230404151914/model/best_model_116_98.4700.pth"
# 待测试图片目录
image_dir="data/test_images"
python demo.py -c $config_file  -m $model_file --image_dir $image_dir

Windows系统,请将$config_file, $model_file ,$image_dir等变量代替为对应的变量值即可,如

# 配置文件
python demo.py -c data/pretrained/resnet18_1.0_CrossEntropyLoss_20230404151914/config.yaml -m data/pretrained/resnet18_1.0_CrossEntropyLoss_20230404151914/model/best_model_116_98.4700.pth --image_dir data/test_images

运行测试结果:

​​

pred_index:['人参'],pred_score:[0.9979814]

pred_index:['板蓝根'],pred_score:[0.99861455]

pred_index:['鳖甲'],pred_score:[0.99996114]

​​pred_index:['阿胶'],pred_score:[0.9999316]


5.项目源码下载

【项目源码下载】Pytorch实现中药材(中草药)分类识别(含训练代码和数据集)

整套项目源码内容包含:

  • 中药材(中草药)数据集:**Chinese-Medicine-163:**,共有收集了163种中草药(中药材)的图片数据,分为两个子集:训练集(Train)和测试集(Test);其中训练集(Train)总数超过25万,平均每个种类约1575张图片,测试集(Test)总数1万,平均每个种类约61张图片,所有照片都已经按照其所属类别存放于各自的文件夹下,可直接用于深度学习分类模型训练。
  • 整套中药材(中草药)分类训练代码和测试代码(Pytorch版本), 支持的backbone骨干网络模型有:googlenet,resnet[18,34,50],inception_v3,mobilenet_v2等, 其他backbone可以自定义添加
  • 提供中药材(中草药)识别分类模型训练代码:train.py
  • 提供中药材(中草药)识别分类模型测试代码:demo.py
  • Demo支持批量图片测试
  • 项目支持自定义数据集进行训练
  • 项目源码自带训练好的模型文件,可直接运行测试: python demo.py

本文转载自: https://blog.csdn.net/guyuealian/article/details/129880963
版权归原作者 AI吃大瓜 所有, 如有侵权,请联系我们删除。

“Pytorch实现中药材(中草药)分类识别(含训练代码和数据集)”的评论:

还没有评论