flink cdc 终于支持 sqlserver 了。
现在互联网公司用sqlserver的不多,大部分都是一些国企的老旧系统。我们以前同步数据,都是用datax,但是不能实时同步数据。现在有了flinkcdc,可以实现实时同步了。
1、首先sqlserver版本:要求sqlserver版本为14及以上,也就是SQL Server 2017 版。
2、sqlserver开启cdc,具体细节可以百度,有一点要注意,必须启动SQL Server 代理服务。
3、需要实现一个json解析方法,用于将同步过来的json数据解析出来,并insert到目标数据库
4、如果需要断点续传,需要设置ck,由于我们这边设备有限。使用的是RocksDBStateBackend,把数据保存到本地了。如果有大数据环境,建议使用FsStateBackend(文件系统状态后端 hdfs),将数据保存到hdfs
5、关于维表关联问题,我将维表数据放到了redis中
下面是代码:
1、pom.xml
<properties>
<flink.version>1.13.5</flink.version>
<scala.version>2.11</scala.version>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-connector-sqlserver-cdc</artifactId>
<!-- The dependency is available only for stable releases, SNAPSHOT dependency need build by yourself. -->
<version>2.3-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>${flink.version}</version>
<!-- <scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>${flink.version}</version>
<!-- <scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-runtime-web_2.11</artifactId>
<version>${flink.version}</version>
<!-- <scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>joda-time</groupId>
<artifactId>joda-time</artifactId>
<version>2.7</version>
</dependency>
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>ru.yandex.clickhouse</groupId>
<artifactId>clickhouse-jdbc</artifactId>
<version>0.2.6</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.7.0</version>
</dependency>
</dependencies>
2、
package com.cmei.s2c;
import com.ververica.cdc.connectors.sqlserver.SqlServerSource;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.runtime.state.memory.MemoryStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
public class SqlServerSourceExample {
public static void main(String[] args) throws Exception {
SourceFunction<String> sourceFunction = SqlServerSource.<String>builder()
.hostname("192.168.10.134")
.port(1433)
.database("inventory") // monitor sqlserver database
.tableList("dbo.products") // monitor products table
.username("sa")
.password("qwe123==")
.deserializer(new JsonDebeziumDeserializationSchema()) // converts SourceRecord to JSON String
.build();
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
//2.Flink-CDC将读取binlog的位置信息以状态的方式保存在CK,如果想要做到断点续传,需要从Checkpoint或者Savepoint启动程序
//2.1 开启Checkpoint,每隔5秒钟做一次CK
env.enableCheckpointing(5000L);
//2.2 指定CK的一致性语义
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//2.3 设置任务关闭的时候保留最后一次CK数据
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
//2.4 指定从CK自动重启策略
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 2000L));
//2.5 设置状态后端
env.setStateBackend(new RocksDBStateBackend("file:///usr/local/flink-1.13.5/ck"));
//env.setStateBackend(new MemoryStateBackend());
// MemoryStateBackend(内存状态后端)
// FsStateBackend(文件系统状态后端 hdfs)
// RocksDBStateBackend(RocksDB状态后端)
//env.setStateBackend(new FsStateBackend("hdfs://sc2:8020/flinkCDC"));
//2.6 设置访问HDFS的用户名
//System.setProperty("HADOOP_USER_NAME", "root");
env.addSource(sourceFunction).addSink(new ClickHouseSink()).setParallelism(1);
//env.addSource(sourceFunction).print().setParallelism(1); // use parallelism 1 for sink to keep message ordering
env.execute("1");
}
}
3、json解析
package com.cmei.s2c;
import com.google.gson.Gson;
import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
import io.debezium.data.Envelope;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.util.Collector;
import org.apache.kafka.connect.data.Field;
import org.apache.kafka.connect.data.Schema;
import org.apache.kafka.connect.data.Struct;
import org.apache.kafka.connect.source.SourceRecord;
import java.util.HashMap;
public class JsonDebeziumDeserializationSchema implements DebeziumDeserializationSchema {
@Override
public void deserialize(SourceRecord sourceRecord, Collector collector) throws Exception {
HashMap<String, Object> hashMap = new HashMap<>();
String topic = sourceRecord.topic();
String[] split = topic.split("[.]");
String database = split[1];
String table = split[2];
hashMap.put("database",database);
hashMap.put("table",table);
//获取操作类型
Envelope.Operation operation = Envelope.operationFor(sourceRecord);
//获取数据本身
Struct struct = (Struct)sourceRecord.value();
Struct after = struct.getStruct("after");
Struct before = struct.getStruct("before");
/*
1,同时存在 beforeStruct 跟 afterStruct数据的话,就代表是update的数据
2,只存在 beforeStruct 就是delete数据
3,只存在 afterStruct数据 就是insert数据
*/
if (after != null) {
//insert
Schema schema = after.schema();
HashMap<String, Object> hm = new HashMap<>();
for (Field field : schema.fields()) {
hm.put(field.name(), after.get(field.name()));
}
hashMap.put("data",hm);
}else if (before !=null){
//delete
Schema schema = before.schema();
HashMap<String, Object> hm = new HashMap<>();
for (Field field : schema.fields()) {
hm.put(field.name(), before.get(field.name()));
}
hashMap.put("data",hm);
}else if(before !=null && after !=null){
//update
Schema schema = after.schema();
HashMap<String, Object> hm = new HashMap<>();
for (Field field : schema.fields()) {
hm.put(field.name(), after.get(field.name()));
}
hashMap.put("data",hm);
}
String type = operation.toString().toLowerCase();
if ("create".equals(type)) {
type = "insert";
}else if("delete".equals(type)) {
type = "delete";
}else if("update".equals(type)) {
type = "update";
}
hashMap.put("type",type);
Gson gson = new Gson();
collector.collect(gson.toJson(hashMap));
}
@Override
public TypeInformation<String> getProducedType() {
return BasicTypeInfo.STRING_TYPE_INFO;
}
}
4、clickhousesink,只实现了insert其他可以自己补全
package com.cmei.s2c;
import com.google.gson.Gson;
import com.google.gson.internal.LinkedTreeMap;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.util.HashMap;
public class ClickHouseSink extends RichSinkFunction<String> {
Connection connection;
PreparedStatement pstmt;
PreparedStatement iStmt;
PreparedStatement dStmt;
PreparedStatement uStmt;
private Connection getConnection() {
Connection conn = null;
try {
Class.forName("ru.yandex.clickhouse.ClickHouseDriver");
String url = "jdbc:clickhouse://192.168.10.61:8123/drugdb";
conn = DriverManager.getConnection(url,"bigdata","bigdata");
} catch (Exception e) {
e.printStackTrace();
}
return conn;
}
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
connection = getConnection();
String insertSql = "insert into product(id,name,description,weight) values (?,?,?,?)";
String deleteSql = "delete from product where id=?";
String updateSql = "update product set name=? ,description=?,weight=? where id=?";
iStmt = connection.prepareStatement(insertSql);
dStmt = connection.prepareStatement(deleteSql);
uStmt = connection.prepareStatement(updateSql);
}
// 每条记录插入时调用一次
public void invoke(String value, Context context) throws Exception {
Gson t = new Gson();
HashMap<String, Object> hs = t.fromJson(value, HashMap.class);
LinkedTreeMap<String,Object> source = (LinkedTreeMap<String,Object>)hs.get("source");
String database = (String) source.get("db");
String table = (String) source.get("table");
String op = (String) hs.get("op");
/**
* {"before":null,
* "after":{"id":109,"name":"spare tire","description":"24 inch spare tire","weight":22.2},
* "source":{"version":"1.5.4.Final","connector":"sqlserver","name":"sqlserver_transaction_log_source","ts_ms":1648776173094,"snapshot":"last","db":"inventory","sequence":null,"schema":"dbo","table":"products","change_lsn":null,"commit_lsn":"0000002c:00001a60:0001","event_serial_no":null},
* "op":"r","ts_ms":1648776173094,"transaction":null}*/
//实现insert方法
if ("inventory".equals(database) && "products".equals(table)) {
if ("r".equals(op) || "c".equals(op)) {
LinkedTreeMap<String, Object> data = (LinkedTreeMap<String, Object>) hs.get("after");
Double ids = (Double)data.get("id");
int id = ids.intValue();
String name = (String) data.get("name");
String description = (String) data.get("description");
Double weights = (Double)data.get("weight");
float weight=0;
if("".equals(weights) || weights != null ){
weight = weights.floatValue();
}
iStmt.setInt(1, id);
iStmt.setString(2, name);
iStmt.setString(3, description);
iStmt.setFloat(4, weight);
iStmt.executeUpdate();
}
// else if ("d".equals(type)) {
// System.out.println("delete => " + value);
// LinkedTreeMap<String, Object> data = (LinkedTreeMap<String, Object>) hs.get("data");
// String id = (String) data.get("ID");
// dStmt.setString(1, id);
// dStmt.executeUpdate();
// }
// else if ("u".equals(type)) {
// System.out.println("update => " + value);
// LinkedTreeMap<String, Object> data = (LinkedTreeMap<String, Object>) hs.get("data");
// String id = (String) data.get("ID");
// String cron = (String) data.get("CRON");
// uStmt.setString(1, cron);
// uStmt.setString(2, id);
// uStmt.executeUpdate();
// }
}
}
@Override
public void close() throws Exception {
super.close();
if(pstmt != null) {
pstmt.close();
}
if(connection != null) {
connection.close();
}
}
}
git:
classtime2020/sqlServer2ClickHouse at master · zhaobingkun/classtime2020 · GitHub
版权归原作者 zhaobingkun 所有, 如有侵权,请联系我们删除。