0


荒原之梦·考研数学:2025 考研每日一题(002)

题目

      I 
     
    
      = 
     
     
      
      
        lim 
       
      
        ⁡ 
       
      
      
      
        x 
       
      
        → 
       
      
        1 
       
      
     
     
      
      
        ( 
       
      
        1 
       
      
        − 
       
      
        x 
       
      
        ) 
       
      
        ( 
       
      
        1 
       
      
        − 
       
       
       
         x 
        
       
      
        ) 
       
      
        ⋯ 
       
      
        ( 
       
      
        1 
       
      
        − 
       
       
       
         x 
        
       
         n 
        
       
      
        ) 
       
      
      
      
        ( 
       
      
        1 
       
      
        − 
       
      
        x 
       
       
       
         ) 
        
       
         n 
        
       
      
     
    
      = 
     
    
      ? 
     
    
   
     I = \lim_{x \rightarrow 1} \frac{(1-x) (1-\sqrt{x}) \cdots (1- \sqrt[n]{x})}{ (1-x)^{n} } = ? 
    
   
 I=x→1lim​(1−x)n(1−x)(1−x​)⋯(1−nx​)​=?

解析

          I 
         
        
          = 
         
        
       
      
      
       
        
         
         
          
          
            lim 
           
          
            ⁡ 
           
          
          
          
            x 
           
          
            → 
           
          
            1 
           
          
         
         
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
          
            ) 
           
          
            ( 
           
          
            1 
           
          
            − 
           
           
           
             x 
            
           
          
            ) 
           
          
            ⋯ 
           
          
            ( 
           
          
            1 
           
          
            − 
           
           
           
             x 
            
           
             n 
            
           
          
            ) 
           
          
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
           
           
             ) 
            
           
             n 
            
           
          
         
        
       
      
     
     
      
       
       
         = 
        
       
      
      
       
        
         
         
          
          
            lim 
           
          
            ⁡ 
           
          
          
          
            ( 
           
          
            x 
           
          
            − 
           
          
            1 
           
          
            ) 
           
          
            → 
           
          
            0 
           
          
         
         
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
          
            ) 
           
          
            [ 
           
          
            1 
           
          
            − 
           
           
            
            
              1 
             
            
              + 
             
            
              ( 
             
            
              x 
             
            
              − 
             
            
              1 
             
            
              ) 
             
            
           
          
            ] 
           
          
            ⋯ 
           
          
            ( 
           
          
            1 
           
          
            − 
           
           
            
            
              1 
             
            
              + 
             
            
              ( 
             
            
              x 
             
            
              − 
             
            
              1 
             
            
              ) 
             
            
           
             n 
            
           
          
            ) 
           
          
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
           
           
             ) 
            
           
             n 
            
           
          
         
        
       
      
     
     
      
       
       
         = 
        
       
      
      
       
        
         
         
          
          
            lim 
           
          
            ⁡ 
           
          
          
          
            ( 
           
          
            x 
           
          
            − 
           
          
            1 
           
          
            ) 
           
          
            → 
           
          
            0 
           
          
         
         
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
          
            ) 
           
          
            [ 
           
          
            − 
           
           
           
             1 
            
           
             2 
            
           
          
            ( 
           
          
            x 
           
          
            − 
           
          
            1 
           
          
            ) 
           
          
            ] 
           
          
            ⋯ 
           
          
            [ 
           
          
            − 
           
           
           
             1 
            
           
             n 
            
           
          
            ( 
           
          
            x 
           
          
            − 
           
          
            1 
           
          
            ) 
           
          
            ] 
           
          
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
           
           
             ) 
            
           
             n 
            
           
          
         
        
       
      
     
     
      
       
       
         = 
        
       
      
      
       
        
         
         
          
          
            lim 
           
          
            ⁡ 
           
          
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
          
            ) 
           
          
            → 
           
          
            0 
           
          
         
         
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
          
            ) 
           
           
           
             1 
            
           
             2 
            
           
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
          
            ) 
           
          
            ⋯ 
           
           
           
             1 
            
           
             n 
            
           
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
          
            ) 
           
          
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
           
           
             ) 
            
           
             n 
            
           
          
         
        
       
      
     
     
      
       
       
         = 
        
       
      
      
       
        
         
         
          
          
            lim 
           
          
            ⁡ 
           
          
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
          
            ) 
           
          
            → 
           
          
            0 
           
          
         
         
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
           
           
             ) 
            
           
             n 
            
           
          
            ⋅ 
           
           
           
             1 
            
           
             1 
            
           
          
            ⋅ 
           
           
           
             1 
            
           
             2 
            
           
          
            ⋯ 
           
           
           
             1 
            
           
             n 
            
           
          
          
          
            ( 
           
          
            1 
           
          
            − 
           
          
            x 
           
           
           
             ) 
            
           
             n 
            
           
          
         
        
          = 
         
         
         
           1 
          
          
          
            n 
           
          
            ! 
           
          
         
        
       
      
     
    
   
     \begin{aligned} I = & \lim_{x \rightarrow 1} \frac{(1-x) (1-\sqrt{x}) \cdots (1- \sqrt[n]{x})}{ (1-x)^{n} } \\ = & \lim_{(x-1) \rightarrow 0} \frac{(1-x) [1-\sqrt{1 + (x-1)}] \cdots (1- \sqrt[n]{1 + (x-1)})}{ (1-x)^{n} } \\ = & \lim_{(x-1) \rightarrow 0} \frac{(1-x) [-\frac{1}{2} (x-1)] \cdots [-\frac{1}{n} (x-1)]}{(1-x)^{n}} \\ = & \lim_{(1-x) \rightarrow 0} \frac{(1-x) \frac{1}{2} (1-x) \cdots \frac{1}{n} (1-x)}{(1-x)^{n}} \\ = & \lim_{(1-x) \rightarrow 0} \frac{(1-x)^{n} \cdot \frac{1}{1} \cdot \frac{1}{2} \cdots \frac{1}{n}}{(1-x)^{n}} = \frac{1}{n!} \end{aligned} 
    
   
 I=====​x→1lim​(1−x)n(1−x)(1−x​)⋯(1−nx​)​(x−1)→0lim​(1−x)n(1−x)[1−1+(x−1)​]⋯(1−n1+(x−1)​)​(x−1)→0lim​(1−x)n(1−x)[−21​(x−1)]⋯[−n1​(x−1)]​(1−x)→0lim​(1−x)n(1−x)21​(1−x)⋯n1​(1−x)​(1−x)→0lim​(1−x)n(1−x)n⋅11​⋅21​⋯n1​​=n!1​​

详细解析:当分子中包含无穷多个因式的时候,该怎么计算极限? - 荒原之梦

关注 荒原之梦,专注于工科大学数学和考研数学。

标签: 考研 考研数学

本文转载自: https://blog.csdn.net/wy_bk/article/details/135919686
版权归原作者 荒原之梦网 所有, 如有侵权,请联系我们删除。

“荒原之梦·考研数学:2025 考研每日一题(002)”的评论:

还没有评论