题目
I
=
lim
x
→
1
(
1
−
x
)
(
1
−
x
)
⋯
(
1
−
x
n
)
(
1
−
x
)
n
=
?
I = \lim_{x \rightarrow 1} \frac{(1-x) (1-\sqrt{x}) \cdots (1- \sqrt[n]{x})}{ (1-x)^{n} } = ?
I=x→1lim(1−x)n(1−x)(1−x)⋯(1−nx)=?
解析
I
=
lim
x
→
1
(
1
−
x
)
(
1
−
x
)
⋯
(
1
−
x
n
)
(
1
−
x
)
n
=
lim
(
x
−
1
)
→
0
(
1
−
x
)
[
1
−
1
+
(
x
−
1
)
]
⋯
(
1
−
1
+
(
x
−
1
)
n
)
(
1
−
x
)
n
=
lim
(
x
−
1
)
→
0
(
1
−
x
)
[
−
1
2
(
x
−
1
)
]
⋯
[
−
1
n
(
x
−
1
)
]
(
1
−
x
)
n
=
lim
(
1
−
x
)
→
0
(
1
−
x
)
1
2
(
1
−
x
)
⋯
1
n
(
1
−
x
)
(
1
−
x
)
n
=
lim
(
1
−
x
)
→
0
(
1
−
x
)
n
⋅
1
1
⋅
1
2
⋯
1
n
(
1
−
x
)
n
=
1
n
!
\begin{aligned} I = & \lim_{x \rightarrow 1} \frac{(1-x) (1-\sqrt{x}) \cdots (1- \sqrt[n]{x})}{ (1-x)^{n} } \\ = & \lim_{(x-1) \rightarrow 0} \frac{(1-x) [1-\sqrt{1 + (x-1)}] \cdots (1- \sqrt[n]{1 + (x-1)})}{ (1-x)^{n} } \\ = & \lim_{(x-1) \rightarrow 0} \frac{(1-x) [-\frac{1}{2} (x-1)] \cdots [-\frac{1}{n} (x-1)]}{(1-x)^{n}} \\ = & \lim_{(1-x) \rightarrow 0} \frac{(1-x) \frac{1}{2} (1-x) \cdots \frac{1}{n} (1-x)}{(1-x)^{n}} \\ = & \lim_{(1-x) \rightarrow 0} \frac{(1-x)^{n} \cdot \frac{1}{1} \cdot \frac{1}{2} \cdots \frac{1}{n}}{(1-x)^{n}} = \frac{1}{n!} \end{aligned}
I=====x→1lim(1−x)n(1−x)(1−x)⋯(1−nx)(x−1)→0lim(1−x)n(1−x)[1−1+(x−1)]⋯(1−n1+(x−1))(x−1)→0lim(1−x)n(1−x)[−21(x−1)]⋯[−n1(x−1)](1−x)→0lim(1−x)n(1−x)21(1−x)⋯n1(1−x)(1−x)→0lim(1−x)n(1−x)n⋅11⋅21⋯n1=n!1
详细解析:当分子中包含无穷多个因式的时候,该怎么计算极限? - 荒原之梦
关注 荒原之梦,专注于工科大学数学和考研数学。
本文转载自: https://blog.csdn.net/wy_bk/article/details/135919686
版权归原作者 荒原之梦网 所有, 如有侵权,请联系我们删除。
版权归原作者 荒原之梦网 所有, 如有侵权,请联系我们删除。