0


flink cdc DataStream api 时区问题

flink cdc DataStream api 时区问题

以postgrsql 作为数据源时,Date和timesatmp等类型cdc同步读出来时,会发现一下几个问题:

时间,日期等类型的数据对应的会转化为Int,long等类型。

源表同步后,时间相差8小时。这是因为时区不同的缘故。

源表:
在这里插入图片描述
sink 表:
在这里插入图片描述
解决方案:在自定义序列化时进行处理。
java code


package pg.cdc.ds;import com.alibaba.fastjson.JSONObject;import com.ververica.cdc.debezium.DebeziumDeserializationSchema;import io.debezium.data.Envelope;import org.apache.flink.api.common.typeinfo.BasicTypeInfo;import org.apache.flink.api.common.typeinfo.TypeInformation;import org.apache.flink.util.Collector;import org.apache.kafka.connect.data.Field;import org.apache.kafka.connect.data.Schema;import org.apache.kafka.connect.data.Struct;import org.apache.kafka.connect.source.SourceRecord;import java.text.SimpleDateFormat;import java.time.ZoneId;import java.util.Date;import java.util.List;

public class CustomerDeserialization implements DebeziumDeserializationSchema<String>{

    ZoneId serverTimeZone;
    @Override
    public void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception {

        //1.创建JSON对象用于存储最终数据
        JSONObject result = new JSONObject();
        Struct value =(Struct) sourceRecord.value();

        //2.获取库名&表名
        Struct sourceStruct = value.getStruct("source");
        String database = sourceStruct.getString("db");
        String schema = sourceStruct.getString("schema");
        String tableName = sourceStruct.getString("table");

        //3.获取"before"数据
        Struct before = value.getStruct("before");
        JSONObject beforeJson = new JSONObject();
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        SimpleDateFormat sdf1 = new SimpleDateFormat("yyyy-MM-dd");if(before != null){
            Schema beforeSchema = before.schema();
            List<Field> beforeFields = beforeSchema.fields();for(Field field : beforeFields){
                Object beforeValue = before.get(field);if("int64".equals(field.schema().type().getName())&&"io.debezium.time.MicroTimestamp".equals(field.schema().name())){if(beforeValue != null){
                        long times=(long) beforeValue / 1000;
                        String dateTime = sdf.format(new Date((times -8*60*60*1000)));

                        beforeJson.put(field.name(), dateTime);}}elseif("int64".equals(field.schema().type().getName())&&"io.debezium.time.NanoTimestamp".equals(field.schema().name())){if(beforeValue != null){
                        long times=(long) beforeValue;
                        String dateTime = sdf.format(new Date((times -8*60*60*1000)));
                        beforeJson.put(field.name(), dateTime);}}elseif("int64".equals(field.schema().type().getName())&&"io.debezium.time.Timestamp".equals(field.schema().name())){if(beforeValue != null){
                        long times=(long) beforeValue;
                        String dateTime = sdf.format(new Date((times -8*60*60)));
                        beforeJson.put(field.name(), dateTime);}}else if("int32".equals(field.schema().type().getName())&&"io.debezium.time.Date".equals(field.schema().name())){
                    if(beforeValue != null){
                        int times=(int) beforeValue;
                        String dateTime = sdf1.format(new Date(times * 24 * 60 * 60L * 1000));
                        beforeJson.put(field.name(), dateTime);}}else{
                    beforeJson.put(field.name(), beforeValue);}}}
        //4.获取"after"数据
        Struct after = value.getStruct("after");
        JSONObject afterJson = new JSONObject();if(after != null){
            Schema afterSchema = after.schema();
            List<Field> afterFields = afterSchema.fields();for(Field field : afterFields){
                Object afterValue = after.get(field);if("int64".equals(field.schema().type().getName())&&"io.debezium.time.MicroTimestamp".equals(field.schema().name())){if(afterValue != null){
                        long times=(long) afterValue / 1000;
                        String dateTime = sdf.format(new Date((times -8*60*60*1000)));

                        afterJson.put(field.name(), dateTime);}}elseif("int64".equals(field.schema().type().getName())&&"io.debezium.time.NanoTimestamp".equals(field.schema().name())){if(afterValue != null){
                        long times=(long) afterValue;
                        String dateTime = sdf.format(new Date((times -8*60*60*1000)));
                        afterJson.put(field.name(), dateTime);}}elseif("int64".equals(field.schema().type().getName())&&"io.debezium.time.Timestamp".equals(field.schema().name())){if(afterValue != null){
                        long times=(long) afterValue;
                        String dateTime = sdf.format(new Date((times -8*60*60)));
                        afterJson.put(field.name(), dateTime);}}else if("int32".equals(field.schema().type().getName())&&"io.debezium.time.Date".equals(field.schema().name())){
                    if(afterValue != null){
                        int times=(int) afterValue;
                        String dateTime = sdf1.format(new Date(times * 24 * 60 * 60L * 1000));
                        afterJson.put(field.name(), dateTime);}}else{
                    afterJson.put(field.name(), afterValue);}}}

        //5.获取操作类型  CREATE UPDATE DELETE
        Envelope.Operation operation = Envelope.operationFor(sourceRecord);
        String type= operation.toString().toLowerCase();if("create".equals(type)||"read".equals(type)){type="insert";}

        //6.将字段写入JSON对象
        result.put("database", database);
        result.put("schema", schema);
        result.put("tableName", tableName);
        result.put("before", beforeJson);
        result.put("after", afterJson);
        result.put("type", type);
        //7.输出数据
        collector.collect(result.toJSONString());}

    @Override
    public TypeInformation<String>getProducedType(){return BasicTypeInfo.STRING_TYPE_INFO;}}

scala code

import com.ververica.cdc.debezium.DebeziumDeserializationSchema
import com.ververica.cdc.debezium.utils.TemporalConversions
import io.debezium.time._
import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.types.Row
import org.apache.flink.util.Collector
import org.apache.kafka.connect.data.{SchemaBuilder, Struct}import org.apache.kafka.connect.source.SourceRecord
import java.sql
import java.time.{Instant, LocalDateTime, ZoneId}import scala.collection.JavaConverters._
import scala.util.parsing.json.JSONObject
 
 
 
class StructDebeziumDeserializationSchema(serverTimeZone: String) extends DebeziumDeserializationSchema[Row]{
 
  override def deserialize(sourceRecord: SourceRecord, collector: Collector[Row]): Unit ={
    // 解析主键
    val key = sourceRecord.key().asInstanceOf[Struct]
    val keyJs = parseStruct(key)
 
    // 解析值
    val value = sourceRecord.value().asInstanceOf[Struct]
    val source= value.getStruct("source")
    val before = parseStruct(value.getStruct("before"))
    val after = parseStruct(value.getStruct("after"))
 
    val row = Row.withNames()
    row.setField("table", s"${source.get("db")}.${source.get("table")}")
    row.setField("key", keyJs)
    row.setField("op", value.get("op"))
    row.setField("op_ts", LocalDateTime.ofInstant(Instant.ofEpochMilli(source.getInt64("ts_ms")), ZoneId.of(serverTimeZone)))
    row.setField("current_ts", LocalDateTime.ofInstant(Instant.ofEpochMilli(value.getInt64("ts_ms")), ZoneId.of(serverTimeZone)))
    row.setField("before", before)
    row.setField("after", after)
    collector.collect(row)}
 
  /** 解析[[Struct]]结构为json字符串 */
  private def parseStruct(struct: Struct): String ={if(struct == null)return null
    val map = struct.schema().fields().asScala.map(field =>{
      val v= struct.get(field)
      val typ = field.schema().name()
      println(s"$v, $typ, ${field.name()}")
      val value =v match {case long if long.isInstanceOf[Long]=> convertLongToTime(long.asInstanceOf[Long], typ)case iv if iv.isInstanceOf[Int]=> convertIntToDate(iv.asInstanceOf[Int], typ)case iv if iv == null => null
        case _ => convertObjToTime(v, typ)}(field.name(), value)}).filter(_._2 != null).toMap
    JSONObject.apply(map).toString()}
 
  /** 类型转换 */
  private def convertObjToTime(obj: Any, typ: String): Any ={
    typ match {case Time.SCHEMA_NAME | MicroTime.SCHEMA_NAME | NanoTime.SCHEMA_NAME =>
        sql.Time.valueOf(TemporalConversions.toLocalTime(obj)).toString
      case Timestamp.SCHEMA_NAME | MicroTimestamp.SCHEMA_NAME | NanoTimestamp.SCHEMA_NAME | ZonedTimestamp.SCHEMA_NAME =>
        sql.Timestamp.valueOf(TemporalConversions.toLocalDateTime(obj, ZoneId.of(serverTimeZone))).toString
      case _ => obj
    }}
 
  /** long 转换为时间类型 */
  private def convertLongToTime(obj: Long, typ: String): Any ={
    val time_schema = SchemaBuilder.int64().name("org.apache.kafka.connect.data.Time")
    val date_schema = SchemaBuilder.int64().name("org.apache.kafka.connect.data.Date")
    val timestamp_schema = SchemaBuilder.int64().name("org.apache.kafka.connect.data.Timestamp")
    typ match {case Time.SCHEMA_NAME =>
        org.apache.kafka.connect.data.Time.toLogical(time_schema, obj.asInstanceOf[Int]).toInstant.atZone(ZoneId.of(serverTimeZone)).toLocalTime.toString
      case MicroTime.SCHEMA_NAME =>
        org.apache.kafka.connect.data.Time.toLogical(time_schema, (obj / 1000).asInstanceOf[Int]).toInstant.atZone(ZoneId.of(serverTimeZone)).toLocalTime.toString
      case NanoTime.SCHEMA_NAME =>
        org.apache.kafka.connect.data.Time.toLogical(time_schema, (obj / 1000 / 1000).asInstanceOf[Int]).toInstant.atZone(ZoneId.of(serverTimeZone)).toLocalTime.toString
      case Timestamp.SCHEMA_NAME =>
        val t = org.apache.kafka.connect.data.Timestamp.toLogical(timestamp_schema, obj).toInstant.atZone(ZoneId.of(serverTimeZone)).toLocalDateTime
        java.sql.Timestamp.valueOf(t).toString
      case MicroTimestamp.SCHEMA_NAME =>
        val t = org.apache.kafka.connect.data.Timestamp.toLogical(timestamp_schema, obj / 1000).toInstant.atZone(ZoneId.of(serverTimeZone)).toLocalDateTime
        java.sql.Timestamp.valueOf(t).toString
      case NanoTimestamp.SCHEMA_NAME =>
        val t = org.apache.kafka.connect.data.Timestamp.toLogical(timestamp_schema, obj / 1000 / 1000).toInstant.atZone(ZoneId.of(serverTimeZone)).toLocalDateTime
        java.sql.Timestamp.valueOf(t).toString
      case Date.SCHEMA_NAME =>
        org.apache.kafka.connect.data.Date.toLogical(date_schema, obj.asInstanceOf[Int]).toInstant.atZone(ZoneId.of(serverTimeZone)).toLocalDate.toString
      case _ => obj
    }}
 
  private def convertIntToDate(obj:Int, typ: String): Any ={
    val date_schema = SchemaBuilder.int64().name("org.apache.kafka.connect.data.Date")
    typ match {case Date.SCHEMA_NAME =>
        org.apache.kafka.connect.data.Date.toLogical(date_schema, obj).toInstant.atZone(ZoneId.of(serverTimeZone)).toLocalDate.toString
      case _ => obj
    }}
 
  override def getProducedType: TypeInformation[Row]={
    TypeInformation.of(classOf[Row])}}

mysql cdc时区问题

mysql cdc也会出现上述时区问题,Debezium默认将MySQL中datetime类型转成UTC的时间戳({@link io.debezium.time.Timestamp}),时区是写死的无法更改,导致数据库中设置的UTC+8,到kafka中变成了多八个小时的long型时间戳 Debezium默认将MySQL中的timestamp类型转成UTC的字符串。

解决思路有两种:

1:自定义序列化方式的时候做时区转换。
2:自定义时间转换类,通过debezium配置文件指定转化格式。

这里主要使用第二种方式。

package com.zmn.schema;import io.debezium.spi.converter.CustomConverter;import io.debezium.spi.converter.RelationalColumn;import org.apache.kafka.connect.data.SchemaBuilder;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import java.time.*;import java.time.format.DateTimeFormatter;import java.util.Properties;import java.util.function.Consumer;

/**
 * 处理Debezium时间转换的问题
 * Debezium默认将MySQL中datetime类型转成UTC的时间戳({@link io.debezium.time.Timestamp}),时区是写死的无法更改,
 * 导致数据库中设置的UTC+8,到kafka中变成了多八个小时的long型时间戳
 * Debezium默认将MySQL中的timestamp类型转成UTC的字符串。
 * | mysql                               | mysql-binlog-connector                   | debezium                          |
 * | ----------------------------------- | ---------------------------------------- | --------------------------------- |
 * | date<br>(2021-01-28)| LocalDate<br/>(2021-01-28)| Integer<br/>(18655)|
 * | time<br/>(17:29:04)| Duration<br/>(PT17H29M4S)| Long<br/>(62944000000)|
 * | timestamp<br/>(2021-01-28 17:29:04)| ZonedDateTime<br/>(2021-01-28T09:29:04Z)| String<br/>(2021-01-28T09:29:04Z)|
 * | Datetime<br/>(2021-01-28 17:29:04)| LocalDateTime<br/>(2021-01-28T17:29:04)| Long<br/>(1611854944000)|
 *
 * @see io.debezium.connector.mysql.converters.TinyIntOneToBooleanConverter
 */
public class MySqlDateTimeConverter implements CustomConverter<SchemaBuilder, RelationalColumn>{

    private final static Logger logger = LoggerFactory.getLogger(MySqlDateTimeConverter.class);

    private DateTimeFormatter dateFormatter = DateTimeFormatter.ISO_DATE;
    private DateTimeFormatter timeFormatter = DateTimeFormatter.ISO_TIME;
    private DateTimeFormatter datetimeFormatter = DateTimeFormatter.ISO_DATE_TIME;
    private DateTimeFormatter timestampFormatter = DateTimeFormatter.ISO_DATE_TIME;

    private ZoneId timestampZoneId = ZoneId.systemDefault();

    @Override
    public void configure(Properties props){
        readProps(props, "format.date", p -> dateFormatter = DateTimeFormatter.ofPattern(p));
        readProps(props, "format.time", p -> timeFormatter = DateTimeFormatter.ofPattern(p));
        readProps(props, "format.datetime", p -> datetimeFormatter = DateTimeFormatter.ofPattern(p));
        readProps(props, "format.timestamp", p -> timestampFormatter = DateTimeFormatter.ofPattern(p));
        readProps(props, "format.timestamp.zone", z -> timestampZoneId = ZoneId.of(z));}

    private void readProps(Properties properties, String settingKey, Consumer<String> callback){
        String settingValue =(String) properties.get(settingKey);if(settingValue == null || settingValue.length()==0){return;}
        try {
            callback.accept(settingValue.trim());} catch (IllegalArgumentException | DateTimeException e){
            logger.error("The {} setting is illegal: {}",settingKey,settingValue);
            throw e;}}

    @Override
    public void converterFor(RelationalColumn column, ConverterRegistration<SchemaBuilder> registration){
        String sqlType = column.typeName().toUpperCase();
        SchemaBuilder schemaBuilder = null;
        Converter converter = null;if("DATE".equals(sqlType)){
            schemaBuilder = SchemaBuilder.string().optional().name("com.darcytech.debezium.date.string");
            converter = this::convertDate;}if("TIME".equals(sqlType)){
            schemaBuilder = SchemaBuilder.string().optional().name("com.darcytech.debezium.time.string");
            converter = this::convertTime;}if("DATETIME".equals(sqlType)){
            schemaBuilder = SchemaBuilder.string().optional().name("com.darcytech.debezium.datetime.string");
            converter = this::convertDateTime;}if("TIMESTAMP".equals(sqlType)){
            schemaBuilder = SchemaBuilder.string().optional().name("com.darcytech.debezium.timestamp.string");
            converter = this::convertTimestamp;}if(schemaBuilder != null){
            registration.register(schemaBuilder, converter);}}

    private String convertDate(Object input){if(input instanceof LocalDate){return dateFormatter.format((LocalDate) input);}if(input instanceof Integer){
            LocalDate date= LocalDate.ofEpochDay((Integer) input);return dateFormatter.format(date);}return null;}

    private String convertTime(Object input){if(input instanceof Duration){
            Duration duration =(Duration) input;
            long seconds = duration.getSeconds();
            int nano= duration.getNano();
            LocalTime time= LocalTime.ofSecondOfDay(seconds).withNano(nano);return timeFormatter.format(time);}return null;}

    private String convertDateTime(Object input){if(input instanceof LocalDateTime){return datetimeFormatter.format((LocalDateTime) input);}return null;}

    private String convertTimestamp(Object input){if(input instanceof ZonedDateTime){
            // mysql的timestamp会转成UTC存储,这里的zonedDatetime都是UTC时间
            ZonedDateTime zonedDateTime =(ZonedDateTime) input;
            LocalDateTime localDateTime = zonedDateTime.withZoneSameInstant(timestampZoneId).toLocalDateTime();return timestampFormatter.format(localDateTime);}return null;}}
使用方式:

StreamExecutionEnvironment env= StreamExecutionEnvironment.getExecutionEnvironment();
        Properties properties = new Properties();
        properties.setProperty("snapshot.mode", "schema_only"); // 增量读取

        //自定义时间转换配置
        properties.setProperty("converters", "dateConverters");
        properties.setProperty("dateConverters.type", "pg.cdc.ds.PgSQLDateTimeConverter");
        properties.setProperty("dateConverters.format.date", "yyyy-MM-dd");
        properties.setProperty("dateConverters.format.time", "HH:mm:ss");
        properties.setProperty("dateConverters.format.datetime", "yyyy-MM-dd HH:mm:ss");
        properties.setProperty("dateConverters.format.timestamp", "yyyy-MM-dd HH:mm:ss");
        properties.setProperty("dateConverters.format.timestamp.zone", "UTC+8");
        properties.setProperty("debezium.snapshot.locking.mode","none"); //全局读写锁,可能会影响在线业务,跳过锁设置        
        properties.setProperty("include.schema.changes", "true");
        // 使用flink mysql cdc 发现bigint unsigned类型的字段,capture以后转成了字符串类型,
       // 用的这个解析吧JsonDebeziumDeserializationSchema。
        properties.setProperty("bigint.unsigned.handling.mode","long");
        properties.setProperty("decimal.handling.mode","double");
        
        MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
                .hostname("192.168.10.102")
                .port(3306)
                .username("yusys")
                .password("yusys")
                .port(3306)
                .databaseList("gmall")
                .tableList("gmall.faker_user1")
                .deserializer(new JsonDebeziumDeserializationSchema())
                .debeziumProperties(properties)
                .serverId(5409)
                .build();
                
                
      SingleOutputStreamOperator<string> dataSource =env
                .addSource(sourceFunction).setParallelism(10).name("binlog-source");
标签: flink java kafka

本文转载自: https://blog.csdn.net/hellowangxiansheng/article/details/130124580
版权归原作者 活在风浪里~ 所有, 如有侵权,请联系我们删除。

“flink cdc DataStream api 时区问题”的评论:

还没有评论