0


【Hibench 】完成 HDP-Spark 性能测试

🍁 博主 "开着拖拉机回家"带您 Go to New World.✨🍁

🦄 个人主页——🎐开着拖拉机回家_Linux,Java基础学习,大数据运维-CSDN博客 🎐✨🍁

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥

一、HiBench简介


HiBench是Intel推出的一个大数据基准测试工具,可以帮助评估不同的大数据框架在速度、吞吐量和系统资源利用方面评估不同的大数据框架的性能表现。它包含一组Hadoop、Spark和流式WorkLoads,包括Sort、WordCount、TeraSort、Repartition、Sleep、SQL、PageRank、Nutch索引、Bayes、Kmeans、NWeight和增强型DFSIO等。它还包含几个用于Spark Streaming、Flink、Storm和Gearpump的流式WorkLoads。

项目GitHub地址:GitHub - Intel-bigdata/HiBench: HiBench is a big data benchmark suite.


二、版本和依赖


软件

版本

hadoop

2.10(官方要求Apache Hadoop 3.0.x, 3.1.x, 3.2.x, 2.x, CDH5, HDP)

maven

3.8.5

java

8

python

2.7.5

HDP 集群版本信息

Java 和Maven 环境配置


三、下载和编译


3.1 下载安装包


cd /opt
下载并解压
  wget https://github.com/Intel-bigdata/HiBench/archive/v7.1.1.tar.gz
tar -zxvf v7.1.1.tar.gz
cd HiBench-7.1.1/

3.2 HiBench编译


HiBench编译支持如下几种方式:

  • Build All
  • Build a specific framework benchmark
  • Build a single module
  • Build Structured Streaming

在进行Hibench的时候可以指定Spark和Scala的版本,通过如下参数指定

具体参考官网: https://github.com/Intel-bigdata/HiBench/blob/master/docs/build-hibench.md


# 执行全部编译 编译所有框架及模块
./bin/build_all.sh

3.3 Hibench目录说明


  • autogen:主要用于生成测试数据的源码目录
  • bin:测试脚本放置目录
  • common:公共依赖源码目录
  • conf:配置文件目录(Hibench/Hadoop/Spark等配置文件存放目录)
  • docker:docker 方式部署
  • flinkbench:Flink框架源码目录
  • gearpumpbench:gearpumpbench框架源码目录
  • hadoopbench:hadoop框架源码目录
  • sparkbench:spark框架的源码目录
  • stormbench:storm框架的源码目录

四、修改配置文件


4.1 hibench.conf


hibench.conf 配置数据集大小和并行度

hibench.scale.profile                tiny
# Mapper number in hadoop, partition number in Spark
hibench.default.map.parallelism         8

# Reducer nubmer in hadoop, shuffle partition number in Spark
hibench.default.shuffle.parallelism     8
  • hibench.scale.profile:主要配置HiBench测试的数据规模,可自定义配置;
  • hibench.default.map.parallelism:主要配置MapReduce的Mapper数量;
  • hibench.default.shuffle.parallelism:配置Reduce数量;

HiBench的默认数据规模有:tiny, small, large, huge, gigantic andbigdata,在这几种数据规模之外还可以自己指定数据量。

4.2 hadoop.conf


hadoop.conf,配置hadoop集群的相关信息(如下为HDP集群配置)

cp   conf/hadoop.conf.template conf/hadoop.conf

vim conf/hadoop.conf
# Hadoop home
hibench.hadoop.home     /usr/hdp/3.1.4.0-315/hadoop

# The path of hadoop executable
hibench.hadoop.executable     ${hibench.hadoop.home}/bin/hadoop

# Hadoop configraution directory
hibench.hadoop.configure.dir  ${hibench.hadoop.home}/etc/hadoop

# The root HDFS path to store HiBench data
hibench.hdfs.master       hdfs://winner

# Hadoop release provider. Supported value: apache, cdh5, hdp
hibench.hadoop.release    hdp

hibench.hdfs.master 可以在 core-site.xml中的 fs.defaultFS 找到,开启了NameNode高可用 。

4.3 spark.conf


spark.conf,配置hadoop集群的相关信息

cp   conf/spark.conf.template  conf/spark.conf
vim  conf/spark.conf

# Spark home
hibench.spark.home      /usr/hdp/3.1.4.0-315/spark2

可自定义数据规模

conf/workloads/micro/terasort.conf
#datagen
hibench.terasort.tiny.datasize            32000
hibench.terasort.small.datasize            3200000
hibench.terasort.large.datasize            32000000
hibench.terasort.huge.datasize            320000000
hibench.terasort.gigantic.datasize        3200000000
hibench.terasort.bigdata.datasize        6000000000

hibench.workload.datasize        ${hibench.terasort.${hibench.scale.profile}.datasize}
## 增加自定义的数据量
#hibench.terasort.myscale.datasize 5242880
#hibench.workload.datasize               ${hibench.terasort.${hibench.scale.profile}.datasize}

# export for shell script
hibench.workload.input            ${hibench.hdfs.data.dir}/Terasort/Input
hibench.workload.output            ${hibench.hdfs.data.dir}/Terasort/Output

在 hibench.conf 中 设置 hibench.scale.profile 为 myscale ,默认为 tiny


五、运行测试


5.1 准备数据


HDP 集群开启了 kerberos , 运行脚本使用了 kerberos 用户。如下生成一个WordCount测试数据集。

bin/workloads/micro/wordcount/prepare/prepare.sh

5.2 运行测试


将WordCount基准测试数据集生成后,就可以执行基准测试了,对于WordCount基准测试选择了Spark 运行以下命令即可:

bin/workloads/micro/terasort/spark/run.sh

通过HDFS可以看到/HiBench目录下生成的各个用例生成的测试数据及用例结果

YARN 可以到 任务 ScalaWordCount

5.3 report结果查询


[root@hdp105 HiBench-7.1.1]# cat    report/hibench.report 
Type         Date       Time     Input_data_size      Duration(s)          Throughput(bytes/s)  Throughput/node     
ScalaSparkTerasort 2023-08-16 20:07:22 3200000              46.503               68812                17203               
ScalaSparkTerasort 2023-08-16 20:09:26 3200000              38.856               82355                20588               
ScalaSparkWordcount 2023-08-17 13:29:46 37181                66.082               562                  140  

ScalaSparkWordcount 数据大小37181 ,运行时间66.082 ·。 每个用例的测试数据量、运行耗时及吞吐量。如下是生成的日志和统计的指标文件:

即将 wordCount 使用Spark 运行后的 monitor.html 下载到本地 拖到浏览器

 /opt/HiBench-7.1.1/report/wordcount/spark/monitor.html

图表展示如下:

Summarized Network throughputs & Packer-per-sedonds

Summarized Memory usage

Summarized Disk throughput & IOPS


六、遇到的问题


build 的时候遇到了 插件下载不了的问题 ,问题如下:

[INFO] mahout 7.1.1 ....................................... FAILURE [  7.767 s]
[INFO] PEGASUS: A Peta-Scale Graph Mining System 2.0-SNAPSHOT SKIPPED
[INFO] nutchindexing 7.1.1 ................................ SKIPPED
[INFO] stormbench 7.1.1 ................................... SKIPPED
[INFO] stormbench-streaming 7.1.1 ......................... SKIPPED
[INFO] ------------------------------------------------------------------------
[INFO] BUILD FAILURE
[INFO] ------------------------------------------------------------------------
[INFO] Total time:  03:07 min
[INFO] Finished at: 2023-08-17T18:56:25+08:00
[INFO] ------------------------------------------------------------------------
[ERROR] Failed to execute goal com.googlecode.maven-download-plugin:download-maven-plugin:1.2.0:wget (extra-download-execution) on project mahout: IO Error: Could not get content -> [Help 1]
[ERROR] 
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR] 
[ERROR] For more information about the errors and possible solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException
[ERROR] 
[ERROR] After correcting the problems, you can resume the build with the command
[ERROR]   mvn <args> -rf :mahout

报错截图如下:

修改pom文件

hadoopbench/mahout/pom.xml 

解决方式: 就是 把插件下载build 部分删除 ,我不用你就行了, 无非构建 慢点。


参考链接:HiBench 7.x 使用问题整理

HiBench大数据基准测试使用 - 知乎

如何使用HiBench进行基准测试_51CTO博客_基准测试

标签: spark 大数据 Hibench

本文转载自: https://blog.csdn.net/qq_35995514/article/details/132378763
版权归原作者 开着拖拉机回家 所有, 如有侵权,请联系我们删除。

“【Hibench 】完成 HDP-Spark 性能测试”的评论:

还没有评论