0


RabbitMQ进阶学习

在之前的练习作业中,我们改造了余额支付功能,在支付成功后利用RabbitMQ通知交易服务,更新业务订单状态为已支付。

但是大家思考一下,如果这里MQ通知失败,支付服务中支付流水显示支付成功,而交易服务中的订单状态却显示未支付,数据出现了不一致。

此时前端发送请求查询支付状态时,肯定是查询交易服务状态,会发现业务订单未支付,而用户自己知道已经支付成功,这就导致用户体验不一致。

因此,这里我们必须尽可能确保MQ消息的可靠性,即:消息应该至少被消费者处理1次

那么问题来了:

  • 我们该如何确保MQ消息的可靠性
  • 如果真的发送失败,有没有其它的兜底方案?

1.发送者的可靠性

首先,我们一起分析一下消息丢失的可能性有哪些。

消息从发送者发送消息,到消费者处理消息,需要经过的流程是这样的:

消息从生产者到消费者的每一步都可能导致消息丢失:

  • 发送消息时丢失:- 生产者发送消息时连接MQ失败- 生产者发送消息到达MQ后未找到Exchange- 生产者发送消息到达MQ的Exchange后,未找到合适的Queue- 消息到达MQ后,处理消息的进程发生异常
  • MQ导致消息丢失:- 消息到达MQ,保存到队列后,尚未消费就突然宕机
  • 消费者处理消息时:- 消息接收后尚未处理突然宕机- 消息接收后处理过程中抛出异常

综上,我们要解决消息丢失问题,保证MQ的可靠性,就必须从3个方面入手:

  • 确保生产者一定把消息发送到MQ
  • 确保MQ不会将消息弄丢
  • 确保消费者一定要处理消息

1.1.生产者重试机制

首先第一种情况,就是生产者发送消息时,出现了网络故障,导致与MQ的连接中断。

为了解决这个问题,SpringAMQP提供的消息发送时的重试机制。即:当

RabbitTemplate

与MQ连接超时后,多次重试。

修改

publisher

模块的

application.yaml

文件,添加下面的内容:

spring:
  rabbitmq:
    connection-timeout: 1s # 设置MQ的连接超时时间
    template:
      retry:
        enabled: true # 开启超时重试机制
        initial-interval: 1000ms # 失败后的初始等待时间
        multiplier: 1 # 失败后下次的等待时长倍数,下次等待时长 = initial-interval * multiplier
        max-attempts: 3 # 最大重试次数

我们利用命令停掉RabbitMQ服务:

docker stop mq

然后测试发送一条消息,会发现会每隔1秒重试1次,总共重试了3次。消息发送的超时重试机制配置成功了!

注意:当网络不稳定的时候,利用重试机制可以有效提高消息发送的成功率。不过SpringAMQP提供的重试机制是阻塞式的重试,也就是说多次重试等待的过程中,当前线程是被阻塞的。通俗来说在等待期间,代码卡在那里了,不会向下运行了。

    如果对于业务性能有要求,建议**禁用**重试机制。如果一定要使用,请合理配置等待时长和重试次数,当然也可以考虑使用异步线程来执行发送消息的代码。

1.2.生产者确认机制

相比于生产者重试机制,生产者确认机制侧重的是:消息发送时,失败了怎么办。

一般情况下,只要生产者与MQ之间的网路连接顺畅,基本不会出现发送消息丢失的情况,因此大多数情况下我们无需考虑这种问题。

不过,在少数情况下,也会出现消息发送到MQ之后丢失的现象,比如:

  • MQ内部处理消息的进程发生了异常
  • 生产者发送消息到达MQ后未找到Exchange
  • 生产者发送消息到达MQ的Exchange后,未找到合适的Queue,因此无法路由

针对上述情况,RabbitMQ提供了生产者消息确认机制,包括

Publisher Confirm

Publisher Return

两种。在开启确认机制的情况下,当生产者发送消息给MQ后,MQ会根据消息处理的情况返回不同的回执

具体如图所示:

总结如下:

  • 当消息投递到MQ,但是路由失败时,通过Publisher Return返回异常信息,同时返回ack的确认信息,代表投递成功。这种情况一般是RoutingKey填写失败,跟我MQ发送没有关系!
  • 临时消息投递到了MQ,并且入队成功,返回ACK,告知投递成功
  • 持久消息投递到了MQ,并且入队完成持久化(保存到磁盘)后,才会返回ACK ,告知投递成功
  • 其它情况都会返回NACK,告知投递失败

比如说:消息投递到交换机,结果还没来得及持久化到磁盘,结果磁盘因为某种故障 (比如说磁盘满了);MQ内部出现异常 (比如说内存爆满)导致消息丢失。这些情况都会返回NACK。

其中

ack

nack

属于Publisher Confirm机制,

ack

是投递成功;

nack

是投递失败。而

return

则属于Publisher Return机制。

默认两种机制都是关闭状态,需要通过配置文件来开启。

1.3.实现生产者确认

    在我们上面分析的生产者确认机制里面:生产者发消息,MQ给我们回值,我们应该去接收这个值。这里就有两种方法:1.同步等待,发了消息就开始等待,等着MQ给我回值。2.采用异步回调的方式,生产者发了消息,就干别的事了。当MQ回值来了以后我再去处理就行了。

当然这种异步的方式会好一点!接下来我们就采用这种方式。

1.3.1.开启生产者确认

在publisher模块的

application.yaml

中添加配置:

spring:
  rabbitmq:
    publisher-confirm-type: correlated # 开启publisher confirm机制,并设置confirm类型
    publisher-returns: true # 开启publisher return机制,专门用来返回路由失败消息的

这里

publisher-confirm-type

有三种模式可选:

  • none:关闭confirm机制
  • simple:同步阻塞等待MQ的回执
  • **correlated**:MQ异步回调返回回执

一般我们推荐使用**

correlated

,异步回调机制**。

1.3.2.定义ReturnCallback (回调函数)

**每个

RabbitTemplate

只能配置一个

ReturnCallback

因此我们可以在配置类中统一设置。我们在publisher模块定义一个配置类:**

内容如下:

package com.itheima.publisher.config;

import lombok.AllArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.core.ReturnedMessage;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.context.annotation.Configuration;

import javax.annotation.PostConstruct;

@Slf4j
@AllArgsConstructor
@Configuration
public class MqConfig {
    private final RabbitTemplate rabbitTemplate;

    @PostConstruct
    public void init(){
        rabbitTemplate.setReturnsCallback(new RabbitTemplate.ReturnsCallback() {
            @Override
            public void returnedMessage(ReturnedMessage returned) {
                log.error("触发return callback,");
                log.debug("exchange: {}", returned.getExchange());
                log.debug("routingKey: {}", returned.getRoutingKey());
                log.debug("message: {}", returned.getMessage());
                log.debug("replyCode: {}", returned.getReplyCode());
                log.debug("replyText: {}", returned.getReplyText());
            }
        });
    }
}

1.3.3.定义ConfirmCallback

由于每个消息发送时的处理逻辑不一定相同,因此ConfirmCallback需要在每次发消息时定义。具体来说,是在调用RabbitTemplate中的convertAndSend方法时,多传递一个参数:

这里的CorrelationData中包含两个核心的东西:

  • id:消息的唯一标示,MQ对不同的消息的回执以此做判断,避免混淆
  • SettableListenableFuture:回执结果的Future对象

将来MQ的回执就会通过这个

Future

来返回,我们可以提前给

CorrelationData

中的

Future

添加回调函数来处理消息回执:

我们新建一个测试,向系统自带的交换机发送消息,并且添加

ConfirmCallback

@Test
void testPublisherConfirm() {
    // 1.创建CorrelationData
    CorrelationData cd = new CorrelationData();
    // 2.给Future添加ConfirmCallback
    cd.getFuture().addCallback(new ListenableFutureCallback<CorrelationData.Confirm>() {
        @Override
        public void onFailure(Throwable ex) {
            // 2.1.Future发生异常时的处理逻辑,基本不会触发
            log.error("send message fail", ex);
        }
        @Override
        public void onSuccess(CorrelationData.Confirm result) {
            // 2.2.Future接收到回执的处理逻辑,参数中的result就是回执内容
            if(result.isAck()){ // result.isAck(),boolean类型,true代表ack回执,false 代表 nack回执
                log.debug("发送消息成功,收到 ack!");
            }else{ // result.getReason(),String类型,返回nack时的异常描述
                log.error("发送消息失败,收到 nack, reason : {}", result.getReason());
            }
        }
    });
    // 3.发送消息
    rabbitTemplate.convertAndSend("hmall.direct", "q", "hello", cd);
}

CollelationData对象:这个对象里面有一个唯一ID(UUID)当前消息的一个标识。每次发消息都有一个CollelationData对象,因为每个消息都有自己的消息id。将来消息到MQ以后,MQ也能区分每个消息谁是谁。将来做回调的时候,每个消息的回调函数可能不同。

注意这个onFailure和onSuccess方法,是指回调有没有成功。不是指消息执行有没有成功。而onSuccess里根据ack还是nack,才能知道消息有没有发送成功!

执行结果如下:

可以看到,由于传递的

RoutingKey

是错误的,路由失败后,触发了

return callback

,同时也收到了ack。

当我们修改为正确的

RoutingKey

以后,就不会触发

return callback

了,只收到ack。

而如果连交换机都是错误的,则只会收到nack。

注意

开启生产者确认比较消耗MQ性能,一般不建议开启。而且大家思考一下触发确认的几种情况:

  • 路由失败:一般是因为RoutingKey错误导致,往往是编程导致
  • 交换机名称错误:同样是编程错误导致
  • MQ内部故障:这种需要处理,但概率往往较低。因此只有对消息可靠性要求非常高的业务才需要开启,而且仅仅需要开启ConfirmCallback处理nack就可以了。

2.MQ的可靠性

消息到达MQ以后,如果MQ不能及时保存,也会导致消息丢失,所以MQ的可靠性也非常重要。

2.1.数据持久化

为了提升性能,默认情况下MQ的数据都是在内存存储的临时数据,重启后就会消失。为了保证数据的可靠性,必须配置数据持久化,包括:

  • 交换机持久化
  • 队列持久化
  • 消息持久化

我们以控制台界面为例来说明。

2.1.1.交换机持久化

在控制台的

Exchanges

页面,添加交换机时可以配置交换机的

Durability

参数:

设置为

Durable

就是持久化模式,

Transient

就是临时模式。

2.1.2.队列持久化

在控制台的Queues页面,添加队列时,同样可以配置队列的

Durability

参数:

除了持久化以外,你可以看到队列还有很多其它参数,有一些我们会在后期学习。

2.1.3.消息持久化

在控制台发送消息的时候,可以添加很多参数,而消息的持久化是要配置一个

properties

说明:在开启持久化机制以后,如果同时还开启了生产者确认,那么MQ会在消息持久化以后才发送ACK回执,进一步确保消息的可靠性。

不过出于性能考虑,为了减少IO次数,发送到MQ的消息并不是逐条持久化到数据库的,而是每隔一段时间批量持久化。一般间隔在100毫秒左右,这就会导致ACK有一定的延迟,因此建议生产者确认全部采用异步方式。

2.2.LazyQueue

在默认情况下,RabbitMQ会将接收到的信息保存在内存中以降低消息收发的延迟。但在某些特殊情况下,这会导致消息积压,比如:

  • 消费者宕机或出现网络故障
  • 消息发送量激增,超过了消费者处理速度
  • 消费者处理业务发生阻塞

一旦出现消息堆积问题,RabbitMQ的内存占用就会越来越高,直到触发内存预警上限。此时RabbitMQ会将内存消息刷到磁盘上,这个行为成为

PageOut

.

PageOut

会耗费一段时间,并且会阻塞队列进程。因此在这个过程中RabbitMQ不会再处理新的消息,生产者的所有请求都会被阻塞。

为了解决这个问题,从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的模式,也就是惰性队列。惰性队列的特征如下:

  • 接收到消息后直接存入磁盘而非内存
  • 消费者要消费消息时才会从磁盘中读取并加载到内存(也就是懒加载)
  • 支持数百万条的消息存储

而在3.12版本之后,LazyQueue已经成为所有队列的默认格式。因此官方推荐升级MQ为3.12版本或者所有队列都设置为LazyQueue模式。

2.2.1.控制台配置Lazy模式

在添加队列的时候,添加

x-queue-mod=lazy

参数即可设置队列为Lazy模式:

2.2.2.代码配置Lazy模式

在利用SpringAMQP声明队列的时候,添加

x-queue-mod=lazy

参数也可设置队列为Lazy模式:

@Bean
public Queue lazyQueue(){
    return QueueBuilder
            .durable("lazy.queue")
            .lazy() // 开启Lazy模式
            .build();
}

这里是通过

QueueBuilder

lazy()

函数配置Lazy模式,底层源码如下:

当然,我们也可以基于注解来声明队列并设置为Lazy模式:

@RabbitListener(queuesToDeclare = @Queue(
        name = "lazy.queue",
        durable = "true",
        arguments = @Argument(name = "x-queue-mode", value = "lazy")
))
public void listenLazyQueue(String msg){
    log.info("接收到 lazy.queue的消息:{}", msg);
}

2.2.3.更新已有队列为lazy模式

对于已经存在的队列,也可以配置为lazy模式,但是要通过设置policy实现。

可以基于命令行设置policy:

rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues  

命令解读:

  • rabbitmqctl :RabbitMQ的命令行工具
  • set_policy :添加一个策略
  • Lazy :策略名称,可以自定义
  • "^lazy-queue$" :用正则表达式匹配队列的名字
  • '{"queue-mode":"lazy"}' :设置队列模式为lazy模式
  • --apply-to queues:策略的作用对象,是所有的队列

当然,也可以在控制台配置policy,进入在控制台的

Admin

页面,点击

Policies

,即可添加配置:

2.1.消费者确认机制

为了确认消费者是否成功处理消息,RabbitMQ提供了消费者确认机制(Consumer Acknowledgement)。即:当消费者处理消息结束后,应该向RabbitMQ发送一个回执,告知RabbitMQ自己消息处理状态。回执有三种可选值:

  • ack:成功处理消息,RabbitMQ从队列中删除该消息
  • nack:消息处理失败,RabbitMQ需要再次投递消息
  • reject:消息处理失败并拒绝该消息,RabbitMQ从队列中删除该消息

一般reject方式用的较少,除非是消息格式有问题,那就是开发问题了。因此大多数情况下我们需要将消息处理的代码通过

try catch

机制捕获,消息处理成功时返回ack,处理失败时返回nack.

由于消息回执的处理代码比较统一,因此SpringAMQP帮我们实现了消息确认。并允许我们通过配置文件设置ACK处理方式,有三种模式:

  • **none**:不处理。即消息投递给消费者后立刻ack,消息会立刻从MQ删除。非常不安全,不建议使用
  • **manual**:手动模式。需要自己在业务代码中调用api,发送ackreject,存在业务入侵,但更灵活
  • auto:自动模式。SpringAMQP利用AOP对我们的消息处理逻辑做了环绕增强,当业务正常执行时则自动返回ack. 当业务出现异常时,根据异常判断返回不同结果:- 如果是业务异常,会自动返回nack;- 如果是消息处理或校验异常,自动返回reject;

本文转载自: https://blog.csdn.net/qq_64064246/article/details/136479150
版权归原作者 一只特立独行的猪611 所有, 如有侵权,请联系我们删除。

“RabbitMQ进阶学习”的评论:

还没有评论