0


Linux 驱动开发基础知识—— 具体单板的 LED 驱动程序(五)

** 个人名片:**

🦁作者简介:一名喜欢分享和记录学习的在校大学生
🐯个人主页:妄北y

🐧个人QQ:2061314755

🐻个人邮箱:2061314755@qq.com
🦉个人WeChat:Vir2021GKBS
🐼本文由妄北y原创,首发CSDN🎊🎊🎊
🐨座右铭:大多数人想要改造这个世界,但却罕有人想改造自己。

专栏导航:

妄北y系列专栏导航:

C/C++的基础算法:C/C++是一种常用的编程语言,可以用于实现各种算法,这里我们对一些基础算法进行了详细的介绍与分享。🎇🎇🎇

QT基础入门学习:对QT的基础图形化页面设计进行了一个简单的学习与认识,利用QT的基础知识进行了翻金币小游戏的制作🤹🤹🤹

Linux基础编程:初步认识什么是Linux,为什么学Linux,安装环境,进行基础命令的学习,入门级的shell编程。🍻🍻🍻

Linux应用开发基础开发:分享Linux的基本概念、命令行操作、文件系统、用户和权限管理等,网络编程相关知识,TCP/IP 协议、套接字(Socket)编程等,可以实现网络通信功能。💐💐💐

Linux项目开发:Linux基础知识的实践,做项目是最锻炼能力的一个学习方法,这里我们会学习到一些简单基础的项目开发与应用,而且都是毕业设计级别的哦。🤸🤸🤸

非常期待和您一起在这个小小的互联网世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨

文章介绍:

🎉本篇文章对Linux驱动基础学习的相关知识进行分享!🥳🥳🥳

如果您觉得文章不错,期待你的一键三连哦,你的鼓励是我创作动力的源泉,让我们一起加油,一起奔跑,让我们顶峰相见!!!💪💪💪

🎁感谢大家点赞👍收藏⭐评论✍️

目录:

一、怎么写 LED 驱动程序?

    详细步骤如下:

    (1)**看原理图确定引脚**,确定引脚输出什么电平才能点亮/熄灭 LED

    (2)**看主芯片手册**,确定寄存器操作方法:哪些寄存器?哪些位?地址是?

    (3)**编写驱动:**先写框架,再写硬件操作的代码

  **  注意:**在芯片手册中确定的寄存器地址被称为**物理地址**,在 Linux 内核中无法直接使用。 需要使用内核提供的 ioremap 把物理地址映射为**虚拟地址**,使用虚拟地址。

1.1 ioremap 函数的使用:

1.1.1 函数原型:

void __iomem *ioremap(resource_size_t res_cookie, size_t size)

**使用时,要包含头文件: **

#include <asm/io.h>

1.1.2 作用:

    把**物理地址** phys_addr 开始的一段空间(大小为 size),映射为**虚拟地址;**返回值是该段虚拟地址的首地址。
virt_addr = ioremap(phys_addr, size);
    实际上,它是按**页(4096 字节)**进行映射的,是整页整页地映射的。 假设 phys_addr = 0x10002,size=4,ioremap 的内部实现是: 

    (1) phys_addr 按页取整,得到地址 0x10000

    (2) size 按页取整,得到 4096

    (3)把起始地址 0x10000,大小为 4096 的这一块物理地址空间,映射到虚拟地址空间, 假设得到的虚拟空间起始地址为 0xf0010000

    (4) 那么 phys_addr = 0x10002 对应的 virt_addr = 0xf0010002

1.1.3 不再使用该段虚拟地址时,要 iounmap(virt_addr):

void iounmap(volatile void __iomem *cookie)

1.1.4为什么需要映射为虚拟地址

1.2 volatile 函数的使用:

编译器很聪明,会帮我们做些优化,比如:

int a;
a = 0; // 这句话可以优化掉,不影响 a 的结果
a = 1;

有时候编译器会自作聪明,比如:

int *p = ioremap(xxxx, 4); // GPIO 寄存器的地址
*p = 0; // 点灯,但是这句话被优化掉了
*p = 1; // 灭灯

对于上面的情况,为了避免编译器自动优化,需要加上 volatile,告诉它 “这是容易出错的,别乱优化”:

volatile int *p = ioremap(xxxx, 4); // GPIO 寄存器的地址
*p = 0; // 点灯,这句话不会被优化掉
*p = 1; // 灭灯

二、IMX6ULL 的 LED 驱动程序

2.1 led 原理图

    LED 原理图,它使用 GPIO5_IO03,引脚输出低电平时 LED 被点亮, 输出高电平时 LED 被熄灭:![](https://img-blog.csdnimg.cn/direct/05a7a94de9144abd86d3aa17ecb23c24.png)

2.2 所涉及的寄存器操作

2.3 代码操作硬件

2.3.1使能 GPIO5

    设置 b[31:30]就可以使能 GPIO5 

** 注意:在 imx6ullrm.pdf 中,CCM_CCGR1** 的 b[31:30]是保留位, 不去设置 b[31:30],GPIO5 也是默认使能的。

设置为 0b11:

** 00:**该 GPIO 模块全程被关闭

   ** 01:**该 GPIO 模块在 CPU run mode 情况下是使能的;在 WAIT 或 STOP 模式下,关闭

   ** 10:**保留 

   ** 11:**该 GPIO 模块全程使能
/* GPIO5_IO03 */
/* a. 使能 GPIO5
* set CCM to enable GPIO5
* CCM_CCGR1[CG15] 0x20C406C
* bit[31:30] = 0b11
*/

2.3.2 设置 GPIO5_IO03 为 GPIO 模式

设置如下寄存器:

/* b. 设置 GPIO5_IO03 用于 GPIO
* set IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3
* to configure GPIO5_IO03 as GPIO
* IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 0x2290014
* bit[3:0] = 0b0101 alt5
*/

2.3.3 设置 GPIO5_IO03 为输出引脚,设置其输出电平

设置 GPIO5_IO03 为输出引脚,寄存器地址为:

**设置方向寄存器,方向寄存器,把引脚设置为输出引脚: **

**设置数据寄存器,设置引脚的输出电平: **

/* c. 设置 GPIO5_IO03 作为 output 引脚
* set GPIO5_GDIR to configure GPIO5_IO03 as output
* GPIO5_GDIR 0x020AC000 + 0x4
* bit[3] = 0b1
*/
/* d. 设置 GPIO5_DR 输出低电平
* set GPIO5_DR to configure GPIO5_IO03 output 0
* GPIO5_DR 0x020AC000 + 0
* bit[3] = 0b0
*/
/* e. 设置 GPIO5_IO3 输出高电平
* set GPIO5_DR to configure GPIO5_IO03 output 1
* GPIO5_DR 0x020AC000 + 0
* bit[3] = 0b1
*/

三、写程序

3.1 led_opr.h

#ifndef _LED_OPR_H
#define _LED_OPR_H

struct led_operations {
    int num;
    int (*init) (int which); /* 初始化LED, which-哪个LED */       
    int (*ctl) (int which, char status); /* 控制LED, which-哪个LED, status:1-亮,0-灭 */
};

struct led_operations *get_board_led_opr(void);

#endif

3.2 board_100ask_imx6ull.c

#include <linux/module.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <asm/io.h>

#include "led_opr.h"

static volatile unsigned int *CCM_CCGR1                              ;
static volatile unsigned int *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3;
static volatile unsigned int *GPIO5_GDIR                             ;
static volatile unsigned int *GPIO5_DR                               ;

static int board_demo_led_init (int which) /* 初始化LED, which-哪个LED */       
{
    unsigned int val;

    //printk("%s %s line %d, led %d\n", __FILE__, __FUNCTION__, __LINE__, which);
    if (which == 0)
    {
        if (!CCM_CCGR1)
        {
            CCM_CCGR1                               = ioremap(0x20C406C, 4);
            IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 = ioremap(0x2290014, 4);
            GPIO5_GDIR                              = ioremap(0x020AC000 + 0x4, 4);
            GPIO5_DR                                = ioremap(0x020AC000 + 0, 4);
        }
        
        /* GPIO5_IO03 */
        /* a. 使能GPIO5
         * set CCM to enable GPIO5
         * CCM_CCGR1[CG15] 0x20C406C
         * bit[31:30] = 0b11
         */
        *CCM_CCGR1 |= (3<<30);
        
        /* b. 设置GPIO5_IO03用于GPIO
         * set IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3
         *      to configure GPIO5_IO03 as GPIO
         * IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3  0x2290014
         * bit[3:0] = 0b0101 alt5
         */
        val = *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3;
        val &= ~(0xf);
        val |= (5);
        *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 = val;
        
        
        /* b. 设置GPIO5_IO03作为output引脚
         * set GPIO5_GDIR to configure GPIO5_IO03 as output
         * GPIO5_GDIR  0x020AC000 + 0x4
         * bit[3] = 0b1
         */
        *GPIO5_GDIR |= (1<<3);
    }
    
    return 0;
}

static int board_demo_led_ctl (int which, char status) /* 控制LED, which-哪个LED, status:1-亮,0-灭 */
{
    //printk("%s %s line %d, led %d, %s\n", __FILE__, __FUNCTION__, __LINE__, which, status ? "on" : "off");
    if (which == 0)
    {
        if (status) /* on: output 0*/
        {
            /* d. 设置GPIO5_DR输出低电平
             * set GPIO5_DR to configure GPIO5_IO03 output 0
             * GPIO5_DR 0x020AC000 + 0
             * bit[3] = 0b0
             */
            *GPIO5_DR &= ~(1<<3);
        }
        else  /* off: output 1*/
        {
            /* e. 设置GPIO5_IO3输出高电平
             * set GPIO5_DR to configure GPIO5_IO03 output 1
             * GPIO5_DR 0x020AC000 + 0
             * bit[3] = 0b1
             */ 
            *GPIO5_DR |= (1<<3);
        }
    
    }
    return 0;
}

static struct led_operations board_demo_led_opr = {
    .num  = 1,
    .init = board_demo_led_init,
    .ctl  = board_demo_led_ctl,
};

struct led_operations *get_board_led_opr(void)
{
    return &board_demo_led_opr;
}
    它首先构造了一个** led_operations 结构体**,用来表示 LED 的硬件操作:
static struct led_operations board_demo_led_opr = {
    .num  = 1,
    .init = board_demo_led_init,
    .ctl  = board_demo_led_ctl,
};
 **     led_operations 结构体中有init函数指针** , 它指向**board_demo_led_init **函数,在里面将会初始化 LED 引脚:**使能、设置为 GPIO 模式、设置为输出引脚**。

    第 35~38 行,对于寄存器要先使用 ioremap 得到它的**虚拟地址**,以后使用虚拟地址访问寄存器:
static volatile unsigned int *CCM_CCGR1                              ;
static volatile unsigned int *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3;
static volatile unsigned int *GPIO5_GDIR                             ;
static volatile unsigned int *GPIO5_DR                               ;

static int board_demo_led_init (int which) /* 初始化LED, which-哪个LED */       
{
    unsigned int val;

    //printk("%s %s line %d, led %d\n", __FILE__, __FUNCTION__, __LINE__, which);
    if (which == 0)
    {
        if (!CCM_CCGR1)
        {
            CCM_CCGR1                               = ioremap(0x20C406C, 4);
            IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 = ioremap(0x2290014, 4);
            GPIO5_GDIR                              = ioremap(0x020AC000 + 0x4, 4);
            GPIO5_DR                                = ioremap(0x020AC000 + 0, 4);
        }
        
        /* GPIO5_IO03 */
        /* a. 使能GPIO5
         * set CCM to enable GPIO5
         * CCM_CCGR1[CG15] 0x20C406C
         * bit[31:30] = 0b11
         */
        *CCM_CCGR1 |= (3<<30);
        
        /* b. 设置GPIO5_IO03用于GPIO
         * set IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3
         *      to configure GPIO5_IO03 as GPIO
         * IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3  0x2290014
         * bit[3:0] = 0b0101 alt5
         */
        val = *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3;
        val &= ~(0xf);
        val |= (5);
        *IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER3 = val;
        
        
        /* b. 设置GPIO5_IO03作为output引脚
         * set GPIO5_GDIR to configure GPIO5_IO03 as output
         * GPIO5_GDIR  0x020AC000 + 0x4
         * bit[3] = 0b1
         */
        *GPIO5_GDIR |= (1<<3);
    }
    
    return 0;
}

** led_operations 结构体中有 ctl 函数指针,它指向 board_demo_led_ctl 函数,在里面将会根据参数设置 LED 引脚的输出电平**:

static int board_demo_led_ctl (int which, char status) /* 控制LED, which-哪个LED, status:1-亮,0-灭 */
{
    //printk("%s %s line %d, led %d, %s\n", __FILE__, __FUNCTION__, __LINE__, which, status ? "on" : "off");
    if (which == 0)
    {
        if (status) /* on: output 0*/
        {
            /* d. 设置GPIO5_DR输出低电平
             * set GPIO5_DR to configure GPIO5_IO03 output 0
             * GPIO5_DR 0x020AC000 + 0
             * bit[3] = 0b0
             */
            *GPIO5_DR &= ~(1<<3);
        }
        else  /* off: output 1*/
        {
            /* e. 设置GPIO5_IO3输出高电平
             * set GPIO5_DR to configure GPIO5_IO03 output 1
             * GPIO5_DR 0x020AC000 + 0
             * bit[3] = 0b1
             */ 
            *GPIO5_DR |= (1<<3);
        }
    
    }
    return 0;
}
    下面的 **get_board_led_opr** 函数供上层调用 , 给上层提供**led_operations 结构体**:
struct led_operations *get_board_led_opr(void)
{
    return &board_demo_led_opr;
}

3.3 leddrv.c

#include <linux/module.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>

#include "led_opr.h"

/* 1. 确定主设备号                                                                 */
static int major = 0;
static struct class *led_class;
struct led_operations *p_led_opr;

#define MIN(a, b) (a < b ? a : b)

/* 3. 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t led_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
    printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
    return 0;
}

/* write(fd, &val, 1); */
static ssize_t led_drv_write (struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
    int err;
    char status;
    struct inode *inode = file_inode(file);
    int minor = iminor(inode);
    
    printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
    err = copy_from_user(&status, buf, 1);

    /* 根据次设备号和status控制LED */
    p_led_opr->ctl(minor, status);
    
    return 1;
}

static int led_drv_open (struct inode *node, struct file *file)
{
    int minor = iminor(node);
    
    printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
    /* 根据次设备号初始化LED */
    p_led_opr->init(minor);
    
    return 0;
}

static int led_drv_close (struct inode *node, struct file *file)
{
    printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
    return 0;
}

/* 2. 定义自己的file_operations结构体                                              */
static struct file_operations led_drv = {
    .owner     = THIS_MODULE,
    .open    = led_drv_open,
    .read    = led_drv_read,
    .write   = led_drv_write,
    .release = led_drv_close,
};

/* 4. 把file_operations结构体告诉内核:注册驱动程序                                */
/* 5. 谁来注册驱动程序啊?得有一个入口函数:安装驱动程序时,就会去调用这个入口函数 */
static int __init led_init(void)
{
    int err;
    int i;
    
    printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
    major = register_chrdev(0, "100ask_led", &led_drv);  /* /dev/led */

    led_class = class_create(THIS_MODULE, "100ask_led_class");
    err = PTR_ERR(led_class);
    if (IS_ERR(led_class)) {
        printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
        unregister_chrdev(major, "led");
        return -1;
    }

    p_led_opr = get_board_led_opr();

    for (i = 0; i < p_led_opr->num; i++)
        device_create(led_class, NULL, MKDEV(major, i), NULL, "100ask_led%d", i); /* /dev/100ask_led0,1,... */

    
    return 0;
}

/* 6. 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数           */
static void __exit led_exit(void)
{
    int i;
    printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

    for (i = 0; i < p_led_opr->num; i++)
        device_destroy(led_class, MKDEV(major, i)); /* /dev/100ask_led0,1,... */

    device_destroy(led_class, MKDEV(major, 0));
    class_destroy(led_class);
    unregister_chrdev(major, "100ask_led");
}

/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */

module_init(led_init);
module_exit(led_exit);

MODULE_LICENSE("GPL");

第98~101行:获取灯的个数

p_led_opr = get_board_led_opr();        //获得单板提供的结构体

for (i = 0; i < p_led_opr->num; i++)    //获取灯的个数
    device_create(led_class, NULL, MKDEV(major, i), NULL, "100ask_led%d", i); /* /dev/100ask_led0,1,... */

3.4 ledtest.c


#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

/*
 * ./ledtest /dev/100ask_led0 on
 * ./ledtest /dev/100ask_led0 off
 */
int main(int argc, char **argv)
{
    int fd;
    char status;
    
    /* 1. 判断参数 */
    if (argc != 3) 
    {
        printf("Usage: %s <dev> <on | off>\n", argv[0]);
        return -1;
    }

    /* 2. 打开文件 */
    fd = open(argv[1], O_RDWR);
    if (fd == -1)
    {
        printf("can not open file %s\n", argv[1]);
        return -1;
    }

    /* 3. 写文件 */
    if (0 == strcmp(argv[2], "on"))
    {
        status = 1;
        write(fd, &status, 1);
    }
    else
    {
        status = 0;
        write(fd, &status, 1);
    }
    
    close(fd);
    
    return 0;
}

3.5 Makefile


# 1. 使用不同的开发板内核时, 一定要修改KERN_DIR
# 2. KERN_DIR中的内核要事先配置、编译, 为了能编译内核, 要先设置下列环境变量:
# 2.1 ARCH,          比如: export ARCH=arm64
# 2.2 CROSS_COMPILE, 比如: export CROSS_COMPILE=aarch64-linux-gnu-
# 2.3 PATH,          比如: export PATH=$PATH:/home/book/100ask_roc-rk3399-pc/ToolChain-6.3.1/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu/bin 
# 注意: 不同的开发板不同的编译器上述3个环境变量不一定相同,
#       请参考各开发板的高级用户使用手册

KERN_DIR = /home/book/100ask_imx6ull-sdk/Linux-4.9.88

all:
    make -C $(KERN_DIR) M=`pwd` modules 
    $(CROSS_COMPILE)gcc -o ledtest ledtest.c 

clean:
    make -C $(KERN_DIR) M=`pwd` modules clean
    rm -rf modules.order
    rm -f ledtest

# 参考内核源码drivers/char/ipmi/Makefile
# 要想把a.c, b.c编译成ab.ko, 可以这样指定:
# ab-y := a.o b.o
# obj-m += ab.o

# leddrv.c board_100ask_imx6ull.c 编译成 100ask_led.ko
100ask_led-y := leddrv.o board_100ask_imx6ull.o
obj-m    += 100ask_led.o

内核路径:

四、上机测试

4.1编译

编译程序,把代码上传代服务器后执行 make 命令。

cp 100ask_led.ko ledtest.c ~/nfs_rootfs/

4.2 挂载到开发板

在开发板上挂载 NFS

4.3 测试

注意:如果要使用板子自带的系统,需要关闭原有 LED 驱动,也是进 入开发板/sys/class/leds/目录,对于每一个 LED 在该目录下都有一个子目录, 假设某个子目录名为 XXX,则执行如下命令:

[root@100ask:~]# echo none > /sys/class/leds/XXX/trigger
    使用我们的系统时,要先禁止内核中原来的 LED 驱动,把“heatbeat”功能关闭,执行以下命令即可:
[root@100ask:~]# echo none > /sys/class/leds/cpu/trigger

这样就可以使用我们的驱动程序做操作了:

[root@100ask:~]#insmod 100ask_led.ko
[root@100ask:~]#/ledtest /dev/100ask_led0 on
[root@100ask:~]#/ledtest /dev/100ask_led0 off

如果想恢复原来的心跳功能,可以执行:

[root@100ask:~]#echo heartbeat > /sys/class/leds/cpu/trigger
[root@100ask:/mnt]# ls /dev/100ask_led0* -l                    //查询驱动
crw------- 1 root root 240, 0 Jan  1 00:08 /dev/100ask_led0    //查询结果
[root@100ask:/mnt]# ./ledtest /dev/100ask_led0 on              //打开灯
[root@100ask:/mnt]# ./ledtest /dev/100ask_led0 off             //关闭灯

4.4 实验效果

点亮的是红灯旁边的黄色灯,照片可能看的效果不是很明显

    执行**/mnt/ledtest /dev/myled on** 这里有一个黄色小灯会亮起来

    执行**/mnt/ledtest /dev/myled off** 这里有一个黄色小灯会熄灭

大佬觉得有用的话点个赞 👍🏻 呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄

💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍

🔥🔥🔥任务在无形中完成,价值在无形中升华,让我们一起加油吧!🌙🌙🌙


本文转载自: https://blog.csdn.net/m0_63168877/article/details/135882285
版权归原作者 妄北y 所有, 如有侵权,请联系我们删除。

“Linux 驱动开发基础知识—— 具体单板的 LED 驱动程序(五)”的评论:

还没有评论