0. 相关文章链接
** Hudi文章汇总 **
1. 创建表
1.1. 启动spark-sql
# 启动spark-sql之前需要先启动Hive的Metastore
nohup hive --service metastore &
#针对Spark 3.2
spark-sql \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \
--conf 'spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog' \
--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'
# 如果没有配置hive环境变量,手动拷贝hive-site.xml到spark的conf下
1.2. 建表参数
参数名
默认值
说明
primaryKey
uuid
表的主键名,多个字段用逗号分隔。
同 hoodie.datasource.write.recordkey.field
preCombineField
表的预合并字段。
同 hoodie.datasource.write.precombine.field
type
cow
创建的表类型:
type = 'cow'
type = 'mor'
同hoodie.datasource.write.table.type
1.3. 创建非分区表
- 创建一个cow表,默认primaryKey 'uuid',不提供preCombineField
create table hudi_cow_nonpcf_tbl (
uuid int,
name string,
price double
) using hudi;
- 创建一个mor非分区表
create table hudi_mor_tbl (
id int,
name string,
price double,
ts bigint
) using hudi
tblproperties (
type = 'mor',
primaryKey = 'id',
preCombineField = 'ts'
);
1.4. 创建分区表
创建一个cow分区外部表,指定primaryKey和preCombineField
create table hudi_cow_pt_tbl (
id bigint,
name string,
ts bigint,
dt string,
hh string
) using hudi
tblproperties (
type = 'cow',
primaryKey = 'id',
preCombineField = 'ts'
)
partitioned by (dt, hh)
location '/tmp/hudi/hudi_cow_pt_tbl';
1.5. 在已有的hudi表上创建新表
不需要指定模式和非分区列(如果存在)之外的任何属性,Hudi可以自动识别模式和配置。
- 非分区表
create table hudi_existing_tbl0
using hudi
location 'file:///tmp/hudi/dataframe_hudi_nonpt_table';
- 分区表
create table hudi_existing_tbl1
using hudi
partitioned by (dt, hh)
location 'file:///tmp/hudi/dataframe_hudi_pt_table';
1.6. 通过CTAS (Create Table As Select)建表
为了提高向hudi表加载数据的性能,CTAS使用批量插入作为写操作。
- 通过CTAS创建cow非分区表,不指定preCombineField
create table hudi_ctas_cow_nonpcf_tbl
using hudi
tblproperties (primaryKey = 'id')
as
select
1 as id
, 'a1' as name
, 10 as price
;
- 通过CTAS创建cow分区表,指定preCombineField
create table hudi_ctas_cow_pt_tbl
using hudi
tblproperties (type = 'cow', primaryKey = 'id', preCombineField = 'ts')
partitioned by (dt)
as
select
1 as id
, 'a1' as name
, 10 as price
, 1000 as ts
, '2021-12-01' as dt
;
- 通过CTAS从其他表加载数据
# 创建内部表
create table parquet_mngd
using parquet
location 'file:///tmp/parquet_dataset/*.parquet';
# 通过CTAS加载数据
create table hudi_ctas_cow_pt_tbl2
using hudi
location 'file:/tmp/hudi/hudi_tbl/'
options (
type = 'cow',
primaryKey = 'id',
preCombineField = 'ts'
)
partitioned by (datestr)
as
select * from parquet_mngd
;
2. 插入数据
默认情况下,如果提供了preCombineKey,则insert into的写操作类型为upsert,否则使用insert。
2.1. 向非分区表插入数据
insert into hudi_cow_nonpcf_tbl select 1, 'a1', 20;
insert into hudi_mor_tbl select 1, 'a1', 20, 1000;
2.2. 向分区表动态分区插入数据
insert into hudi_cow_pt_tbl partition (dt, hh)
select 1 as id, 'a1' as name, 1000 as ts, '2021-12-09' as dt, '10' as hh;
2.3. 向分区表静态分区插入数据
insert into hudi_cow_pt_tbl partition(dt = '2021-12-09', hh='11') select 2, 'a2', 1000;
2.4. 使用bulk_insert插入数据
hudi支持使用bulk_insert作为写操作的类型,只需要设置两个配置:
hoodie.sql.bulk.insert.enable 和 hoodie.sql.insert.mode
-- 向指定preCombineKey的表插入数据,则写操作为upsert
insert into hudi_mor_tbl select 1, 'a1_1', 20, 1001;
select id, name, price, ts from hudi_mor_tbl;
1 a1_1 20.0 1001
-- 向指定preCombineKey的表插入数据,指定写操作为bulk_insert
set hoodie.sql.bulk.insert.enable=true;
set hoodie.sql.insert.mode=non-strict;
insert into hudi_mor_tbl select 1, 'a1_2', 20, 1002;
select id, name, price, ts from hudi_mor_tbl;
1 a1_1 20.0 1001
1 a1_2 20.0 1002
3. 查询数据
3.1. 查询
select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0
3.2. 时间旅行查询
Hudi从0.9.0开始就支持时间旅行查询。Spark SQL方式要求Spark版本 3.2及以上。
-- 关闭前面开启的bulk_insert
set hoodie.sql.bulk.insert.enable=false;
create table hudi_cow_pt_tbl1 (
id bigint,
name string,
ts bigint,
dt string,
hh string
) using hudi
tblproperties (
type = 'cow',
primaryKey = 'id',
preCombineField = 'ts'
)
partitioned by (dt, hh)
location '/tmp/hudi/hudi_cow_pt_tbl1';
-- 插入一条id为1的数据
insert into hudi_cow_pt_tbl1 select 1, 'a0', 1000, '2021-12-09', '10';
select * from hudi_cow_pt_tbl1;
-- 修改id为1的数据
insert into hudi_cow_pt_tbl1 select 1, 'a1', 1001, '2021-12-09', '10';
select * from hudi_cow_pt_tbl1;
-- 基于第一次提交时间进行时间旅行
select * from hudi_cow_pt_tbl1 timestamp as of '20220307091628793' where id = 1;
-- 其他时间格式的时间旅行写法
select * from hudi_cow_pt_tbl1 timestamp as of '2022-03-07 09:16:28.100' where id = 1;
select * from hudi_cow_pt_tbl1 timestamp as of '2022-03-08' where id = 1;
4. 更新数据
4.1. update
更新操作需要指定preCombineField。
- 语法
UPDATE tableIdentifier SET column = EXPRESSION(,column = EXPRESSION) [ WHERE boolExpression]
- 执行更新
update hudi_mor_tbl set price = price * 2, ts = 1111 where id = 1;
update hudi_cow_pt_tbl1 set name = 'a1_1', ts = 1001 where id = 1;
-- update using non-PK field
update hudi_cow_pt_tbl1 set ts = 1111 where name = 'a1_1';
4.2. MergeInto
- 语法
MERGE INTO tableIdentifier AS target_alias
USING (sub_query | tableIdentifier) AS source_alias
ON <merge_condition>
[ WHEN MATCHED [ AND <condition> ] THEN <matched_action> ]
[ WHEN MATCHED [ AND <condition> ] THEN <matched_action> ]
[ WHEN NOT MATCHED [ AND <condition> ] THEN <not_matched_action> ]
<merge_condition> =A equal bool condition
<matched_action> =
DELETE |
UPDATE SET * |
UPDATE SET column1 = expression1 [, column2 = expression2 ...]
<not_matched_action> =
INSERT * |
INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...])
- 执行案例
-- 1、准备source表:非分区的hudi表,插入数据
create table merge_source (id int, name string, price double, ts bigint) using hudi
tblproperties (primaryKey = 'id', preCombineField = 'ts');
insert into merge_source values (1, "old_a1", 22.22, 2900), (2, "new_a2", 33.33, 2000), (3, "new_a3", 44.44, 2000);
merge into hudi_mor_tbl as target
using merge_source as source
on target.id = source.id
when matched then update set *
when not matched then insert *
;
-- 2、准备source表:分区的parquet表,插入数据
create table merge_source2 (id int, name string, flag string, dt string, hh string) using parquet;
insert into merge_source2 values (1, "new_a1", 'update', '2021-12-09', '10'), (2, "new_a2", 'delete', '2021-12-09', '11'), (3, "new_a3", 'insert', '2021-12-09', '12');
merge into hudi_cow_pt_tbl1 as target
using (
select id, name, '2000' as ts, flag, dt, hh from merge_source2
) source
on target.id = source.id
when matched and flag != 'delete' then
update set id = source.id, name = source.name, ts = source.ts, dt = source.dt, hh = source.hh
when matched and flag = 'delete' then delete
when not matched then
insert (id, name, ts, dt, hh) values(source.id, source.name, source.ts, source.dt, source.hh)
;
5. 删除数据
- 语法:
DELETE FROM tableIdentifier [ WHERE BOOL_EXPRESSION]
- 案例:
delete from hudi_cow_nonpcf_tbl where uuid = 1;
delete from hudi_mor_tbl where id % 2 = 0;
-- 使用非主键字段删除
delete from hudi_cow_pt_tbl1 where name = 'a1_1';
6. 覆盖数据
- 使用INSERT_OVERWRITE类型的写操作覆盖分区表
- 使用INSERT_OVERWRITE_TABLE类型的写操作插入覆盖非分区表或分区表(动态分区)
1)insert overwrite 非分区表
insert overwrite hudi_mor_tbl select 99, 'a99', 20.0, 900;
insert overwrite hudi_cow_nonpcf_tbl select 99, 'a99', 20.0;
2)通过动态分区insert overwrite table到分区表
insert overwrite table hudi_cow_pt_tbl1 select 10, 'a10', 1100, '2021-12-09', '11';
3)通过静态分区insert overwrite 分区表
insert overwrite hudi_cow_pt_tbl1 partition(dt = '2021-12-09', hh='12') select 13, 'a13', 1100;
7. 修改表结构(Alter Table)
- 语法:
-- Alter table name
ALTER TABLE oldTableName RENAME TO newTableName
-- Alter table add columns
ALTER TABLE tableIdentifier ADD COLUMNS(colAndType (,colAndType)*)
-- Alter table column type
ALTER TABLE tableIdentifier CHANGE COLUMN colName colName colType
-- Alter table properties
ALTER TABLE tableIdentifier SET TBLPROPERTIES (key = 'value')
- 案例:
--rename to:
ALTER TABLE hudi_cow_nonpcf_tbl RENAME TO hudi_cow_nonpcf_tbl2;
--add column:
ALTER TABLE hudi_cow_nonpcf_tbl2 add columns(remark string);
--change column:
ALTER TABLE hudi_cow_nonpcf_tbl2 change column uuid uuid int;
--set properties;
alter table hudi_cow_nonpcf_tbl2 set tblproperties (hoodie.keep.max.commits = '10');
8. 修改分区
- 语法:
-- Drop Partition
ALTER TABLE tableIdentifier DROP PARTITION ( partition_col_name = partition_col_val [ , ... ] )
-- Show Partitions
SHOW PARTITIONS tableIdentifier
- 案例:
--show partition:
show partitions hudi_cow_pt_tbl1;
--drop partition:
alter table hudi_cow_pt_tbl1 drop partition (dt='2021-12-09', hh='10');
- 注意:show partition结果是基于文件系统表路径的。删除整个分区数据或直接删除某个分区目录并不精确。
9. 存储过程(Procedures)
- 语法:
--Call procedure by positional arguments
CALL system.procedure_name(arg_1, arg_2, ... arg_n)
--Call procedure by named arguments
CALL system.procedure_name(arg_name_2 => arg_2, arg_name_1 => arg_1, ... arg_name_n => arg_n)
- 案例(可用的存储过程:Procedures | Apache Hudi):
--show commit's info
call show_commits(table => 'hudi_cow_pt_tbl1', limit => 10);
注:**其他Hudi相关文章链接由此进 -> Hudi文章汇总 **
版权归原作者 电光闪烁 所有, 如有侵权,请联系我们删除。