0


Flink高手之路2-Flink集群的搭建

文章目录

Flink高手之路2-Flink集群的搭建

一、Flink的安装模式

1.本地local模式

本地单机模式,一般用于测试环境是否搭建成功,很少使用

2.独立集群模式standalone

Flink自带集群,开发测试使用

3.高可用的独立集群模式standalone HA

Flink自带集群,用于开发测试

4.基于yarn模式Flink on yarn

计算资源统一交给hadoop的yarn进行管理,用于生产环境

二、基础环境

  • 虚拟机
  • jdk1.8
  • ssh免密登录

三、Flink的local模式安装

1. 下载安装包

image-20230223095958681

点击:

image-20230223100026371

点击下载:

image-20230223100136780

2. 上传服务器

找到安装包,并上传:

image-20230223100343969

上传成功:

image-20230223100531282

3.解压

tar xzvf flink-1.16.1-bin-scala_2.12.tgz -C /export/servers/

image-20230223100705880

进入 Servers 目录下:

image-20230224204513745

进入 Flink 目录下:

image-20230224204623616

进入 bin 目录下:

image-20230223101144313

4. 配置环境变量

image-20230223102504529

5. 使环境变量起作用

image-20230223102117785

6.测试显示版本

image-20230224204825795

7.测试scala shell交互命令行(可跳过)

需要flink的版本是1.12及以下的版本,在高版本中 scala shell 被舍去了。

1)安装一下 Flink 1.12 版本

上传文件

image-20230302110343556

上传成功:

image-20230302110658449

解压

image-20230302110812013

image-20230302110837427

2)启动命令行

启动 shell

bin/start-scala-shell.sh local

image-20230302145653033

image-20230302145940827

3)web ui查看

image-20230302150154151

4)scala命令行示例-单词计数(批处理)
  • 准备好数据文件

image-20230302150406555

benv.readTextFile("/root/a.txt").flatMap(_.split(" ")).map((_,1)).groupBy(0).sum(1).print()

image-20230302151135163

5)scala命令行示例2-窗口计数(流处理)

image-20230302151646765

6)退出命令行

输入 :quit 或者 Ctrl + d

image-20230302151805860

8.local模式测试

启动集群并查看进程

image-20230224205107287

9.查看Flink的web ui

启动失败,需要修改/etc/hosts文件,添加localhost的定义

image-20230302152003815

若直接添加

192.168.92.128 localhost

在启动 Hbase时会出现如下错误

image-20230302152424367

修改完成后,启动成功:
在这里插入图片描述

10.local集群运行测试任务-单词计数

1)先准备好数据文件

image-20230302152610056

2)找到单词计数的jar包

image-20230302152748277

3)提交任务到集群上运行

出现错误:org.apache.flink.client.program.ProgramInvocationException: The main method caused an error: java.util.concurrent.ExecutionException: org.apache.flink.runtime.client.JobSubmissionException: Failed to submit JobGraph.

原因:没有启动Flink集群

启动集群:

image-20230302153651124

运行成功:

image-20230302173903844

执行成功后,在/root目录下出现 output 目录

image-20230302153823381

运行结果

image-20230302173042887

4)web ui任务执行过程查看

在这里插入图片描述

点击任务

在这里插入图片描述

11.Flink本地(local)模式任务执行的原理

Flink程序提交任务到 JobClient ,JobClient 提交任务到 JobManager【Master】,JobManager 分发任务给TaskManager,TaskManager执行任务,执行任务后发送状态给 JobManager,JobManager 将结果返回到 JobClient 。

四、Flink的独立集群Standalone模式的安装及测试

1.集群规划

服务器JobManagerTaskManagerhadoop001✅✅hadoop002❎✅hadoop003❎✅

2.下载安装包并上传服务器解压

同上

3.配置环境变量并使环境变量起作用

同上

4.修改Flink的配置文件

image-20230302181334266

1)修改yaml或者yml文件的注意事项
  • 不同的等级用冒号隔开,同时缩进格式
  • 次等级的前面是空格,不能使用制表符
  • 冒号之后如果有值,那么冒号与值之间用至少一个空格分隔,不能紧贴在一起

img

2)修改flink-conf.yaml
  • flink1.16版本的配置
#################################################################################  Licensed to the Apache Software Foundation (ASF) under one#  or more contributor license agreements.  See the NOTICE file#  distributed with this work for additional information#  regarding copyright ownership.  The ASF licenses this file#  to you under the Apache License, Version 2.0 (the#  "License"); you may not use this file except in compliance#  with the License.  You may obtain a copy of the License at##      http://www.apache.org/licenses/LICENSE-2.0##  Unless required by applicable law or agreed to in writing, software#  distributed under the License is distributed on an "AS IS" BASIS,#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.#  See the License for the specific language governing permissions and# limitations under the License.#################################################################################==============================================================================# Common#==============================================================================# The external address of the host on which the JobManager runs and can be# reached by the TaskManagers and any clients which want to connect. This setting# is only used in Standalone mode and may be overwritten on the JobManager side# by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable.# In high availability mode, if you use the bin/start-cluster.sh script and setup# the conf/masters file, this will be taken care of automatically. Yarn# automatically configure the host name based on the hostname of the node where the# JobManager runs.jobmanager.rpc.address: hadoop001

# The RPC port where the JobManager is reachable.jobmanager.rpc.port:6123# The host interface the JobManager will bind to. By default, this is localhost, and will prevent# the JobManager from communicating outside the machine/container it is running on.# On YARN this setting will be ignored if it is set to 'localhost', defaulting to 0.0.0.0.# On Kubernetes this setting will be ignored, defaulting to 0.0.0.0.## To enable this, set the bind-host address to one that has access to an outside facing network# interface, such as 0.0.0.0.jobmanager.bind-host: 0.0.0.0

# The total process memory size for the JobManager.## Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead.jobmanager.memory.process.size: 1600m

# The host interface the TaskManager will bind to. By default, this is localhost, and will prevent# the TaskManager from communicating outside the machine/container it is running on.# On YARN this setting will be ignored if it is set to 'localhost', defaulting to 0.0.0.0.# On Kubernetes this setting will be ignored, defaulting to 0.0.0.0.## To enable this, set the bind-host address to one that has access to an outside facing network# interface, such as 0.0.0.0.taskmanager.bind-host: 0.0.0.0

# The address of the host on which the TaskManager runs and can be reached by the JobManager and# other TaskManagers. If not specified, the TaskManager will try different strategies to identify# the address.## Note this address needs to be reachable by the JobManager and forward traffic to one of# the interfaces the TaskManager is bound to (see 'taskmanager.bind-host').## Note also that unless all TaskManagers are running on the same machine, this address needs to be# configured separately for each TaskManager.taskmanager.host: hadoop001

# The total process memory size for the TaskManager.## Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead.taskmanager.memory.process.size: 1728m

# To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'.# It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory.## taskmanager.memory.flink.size: 1280m# The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.taskmanager.numberOfTaskSlots:2# The parallelism used for programs that did not specify and other parallelism.parallelism.default:2# The default file system scheme and authority.# # By default file paths without scheme are interpreted relative to the local# root file system 'file:///'. Use this to override the default and interpret# relative paths relative to a different file system,# for example 'hdfs://mynamenode:12345'## fs.default-scheme#==============================================================================# High Availability#==============================================================================# The high-availability mode. Possible options are 'NONE' or 'zookeeper'.## high-availability: zookeeper# The path where metadata for master recovery is persisted. While ZooKeeper stores# the small ground truth for checkpoint and leader election, this location stores# the larger objects, like persisted dataflow graphs.# # Must be a durable file system that is accessible from all nodes# (like HDFS, S3, Ceph, nfs, ...) ## high-availability.storageDir: hdfs:///flink/ha/# The list of ZooKeeper quorum peers that coordinate the high-availability# setup. This must be a list of the form:# "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)## high-availability.zookeeper.quorum: localhost:2181# ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes# It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)# The default value is "open" and it can be changed to "creator" if ZK security is enabled## high-availability.zookeeper.client.acl: open#==============================================================================# Fault tolerance and checkpointing#==============================================================================# The backend that will be used to store operator state checkpoints if# checkpointing is enabled. Checkpointing is enabled when execution.checkpointing.interval > 0.## Execution checkpointing related parameters. Please refer to CheckpointConfig and ExecutionCheckpointingOptions for more details.## execution.checkpointing.interval: 3min# execution.checkpointing.externalized-checkpoint-retention: [DELETE_ON_CANCELLATION, RETAIN_ON_CANCELLATION]# execution.checkpointing.max-concurrent-checkpoints: 1# execution.checkpointing.min-pause: 0# execution.checkpointing.mode: [EXACTLY_ONCE, AT_LEAST_ONCE]# execution.checkpointing.timeout: 10min# execution.checkpointing.tolerable-failed-checkpoints: 0# execution.checkpointing.unaligned: false## Supported backends are 'hashmap', 'rocksdb', or the# <class-name-of-factory>.## state.backend: hashmap# Directory for checkpoints filesystem, when using any of the default bundled# state backends.## state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints# Default target directory for savepoints, optional.## state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints# Flag to enable/disable incremental checkpoints for backends that# support incremental checkpoints (like the RocksDB state backend). ## state.backend.incremental: false# The failover strategy, i.e., how the job computation recovers from task failures.# Only restart tasks that may have been affected by the task failure, which typically includes# downstream tasks and potentially upstream tasks if their produced data is no longer available for consumption.jobmanager.execution.failover-strategy: region

#==============================================================================# Rest & web frontend#==============================================================================# The port to which the REST client connects to. If rest.bind-port has# not been specified, then the server will bind to this port as well.#rest.port:8081# The address to which the REST client will connect to#rest.address: hadoop001

# Port range for the REST and web server to bind to.##rest.bind-port: 8080-8090# The address that the REST & web server binds to# By default, this is localhost, which prevents the REST & web server from# being able to communicate outside of the machine/container it is running on.## To enable this, set the bind address to one that has access to outside-facing# network interface, such as 0.0.0.0.#rest.bind-address: 0.0.0.0

# Flag to specify whether job submission is enabled from the web-based# runtime monitor. Uncomment to disable.#web.submit.enable: false# Flag to specify whether job cancellation is enabled from the web-based# runtime monitor. Uncomment to disable.#web.cancel.enable: false#==============================================================================# Advanced#==============================================================================# Override the directories for temporary files. If not specified, the# system-specific Java temporary directory (java.io.tmpdir property) is taken.## For framework setups on Yarn, Flink will automatically pick up the# containers' temp directories without any need for configuration.## Add a delimited list for multiple directories, using the system directory# delimiter (colon ':' on unix) or a comma, e.g.:#     /data1/tmp:/data2/tmp:/data3/tmp## Note: Each directory entry is read from and written to by a different I/O# thread. You can include the same directory multiple times in order to create# multiple I/O threads against that directory. This is for example relevant for# high-throughput RAIDs.## io.tmp.dirs: /tmp# The classloading resolve order. Possible values are 'child-first' (Flink's default)# and 'parent-first' (Java's default).## Child first classloading allows users to use different dependency/library# versions in their application than those in the classpath. Switching back# to 'parent-first' may help with debugging dependency issues.## classloader.resolve-order: child-first# The amount of memory going to the network stack. These numbers usually need # no tuning. Adjusting them may be necessary in case of an "Insufficient number# of network buffers" error. The default min is 64MB, the default max is 1GB.# # taskmanager.memory.network.fraction: 0.1# taskmanager.memory.network.min: 64mb# taskmanager.memory.network.max: 1gb#==============================================================================# Flink Cluster Security Configuration#==============================================================================# Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -# may be enabled in four steps:# 1. configure the local krb5.conf file# 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)# 3. make the credentials available to various JAAS login contexts# 4. configure the connector to use JAAS/SASL# The below configure how Kerberos credentials are provided. A keytab will be used instead of# a ticket cache if the keytab path and principal are set.# security.kerberos.login.use-ticket-cache: true# security.kerberos.login.keytab: /path/to/kerberos/keytab# security.kerberos.login.principal: flink-user# The configuration below defines which JAAS login contexts# security.kerberos.login.contexts: Client,KafkaClient#==============================================================================# ZK Security Configuration#==============================================================================# Below configurations are applicable if ZK ensemble is configured for security# Override below configuration to provide custom ZK service name if configured# zookeeper.sasl.service-name: zookeeper# The configuration below must match one of the values set in "security.kerberos.login.contexts"# zookeeper.sasl.login-context-name: Client#==============================================================================# HistoryServer#==============================================================================# The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)# Directory to upload completed jobs to. Add this directory to the list of# monitored directories of the HistoryServer as well (see below).#jobmanager.archive.fs.dir: hdfs:///completed-jobs/# The address under which the web-based HistoryServer listens.#historyserver.web.address: 0.0.0.0# The port under which the web-based HistoryServer listens.#historyserver.web.port: 8082# Comma separated list of directories to monitor for completed jobs.#historyserver.archive.fs.dir: hdfs:///completed-jobs/# Interval in milliseconds for refreshing the monitored directories.#historyserver.archive.fs.refresh-interval: 10000
  • Flink1.12版本的配置

image-20230318160134929

3)master

image-20230309185746272

4)workers

image-20230309185804682

5.分发文件

1)分发flink

image-20230309190332591

image-20230309190406360

2)分发/etc/profile

image-20230309190547242

3)使得配置文件起作用

在这里插入图片描述

6.启动Flink集群,并查看相关进程

image-20230309190808988

image-20230309190824923

image-20230309190839370

7.web ui查看

image-20230309191202732

8.集群测试

1)提交单词计数的任务,使用默认的参数

image-20230309191530804

image-20230309191557889

image-20230309191655389

2)提交单词计数的任务,使用自定义参数

准备好数据文件

image-20230309191818494

上传hdfs

首先要确保 hdfs 集群已经启动

image-20230309192011383

发现我们以前已经上传过了

image-20230309192200809

提交命令

flink run ./WordCount.jar --input hdfs://hadoop001:9000/input --output hdfs://hadoop001:9000/output

image-20230309194837722

出现错误:

org.apache.flink.core.fs.UnsupportedFileSystemSchemeException:Hadoop is not in the classpath/dependencies.

这个错误需要把flink-1.16.1与hadoop3进行集成。

在这里插入图片描述

3)添加hadoop classpath配置
exportHADOOP_CLASSPATH=`hadoop classpath`

image-20230309204603095

4)分发并激活环境变量

image-20230309204830807

image-20230309204852268

5)下载flink和hadoop的连接工具,上传到flink的lib文件夹

去maven中央仓库下载如下jar包并上传到 flink/lib文件夹中

https://mvnrepository.com/artifact/commons-cli/commons-cli/1.5.0

https://mvnrepository.com/artifact/org.apache.flink/flink-shaded-hadoop-3-uber

这是为了集成hadoop,而shaded依赖已经解决了相关的jar包冲突等问题,该jar包属于第三方jar包,官网有链接,但是并没有hadoop 3.X的,这个直接在maven中央仓库搜索倒是可以搜得到。

image-20230309210652556

上传 jar 包到lib目录下

image-20230309210736892

分发 lib 目录到hadoop002和hadoop003

image-20230309211021659

6)重新启动flink集群

image-20230309211259554

7)重新提交单词计数的任务,使用自定义参数

image-20230309211757055

查看 flink web ui

image-20230309211842634

查看 hdfs web UI

image-20230309211947762

点击一个文件查看

image-20230309212045076

9.工作原理

image-20230318162403218

五、独立集群高可用Standalone-HA搭建

1.集群规划

服务器JobManagerTaskManagerhadoop001yyhadoop002yyhadoop003ny

2.修改flink的配置文件

1)修改flink-conf.yaml文件

image-20230318150454897

image-20230318150742199

2)修改masters文件

image-20230318150958055

3)不用修改workers文件

3.同步配置文件

分发到Hadoop002:

image-20230318151234175

分发到Hadoop003:

image-20230318151309661

4.修改hadoop002上的flink-conf.yaml文件

image-20230318160917260

image-20230318160936730

注意:12.7版本下只需要修改一处就可以了,16.1需要修改3处,否则会提交任务失败。

5.启动集群

1)启动zookeeper

启动ZooKeeper,查看ZooKeeper的状态:

image-20230318151739855

image-20230318151817728

image-20230318151832942

2)启动hdfs
3)启动yarn

image-20230318152032691

4)启动flink集群

image-20230318152301750

image-20230318152322750

image-20230318152342210

6.flink的web ui查看

在这里插入图片描述

image-20230318154611294

7.集群的测试

1)单词计数使用默认的参数

image-20230318155026268

2)杀掉hadoop001的master进程

image-20230318155238807

此时查看web ui,hadoop001无法访问,hadoop002还可以继续访问
在这里插入图片描述

image-20230318155329610

3)再次提交单词计数的任务(使用默认参数)

image-20230318160813397

集群能正常工作,说明高可用在起作用

4)接着杀掉hadoop002的master

image-20230318161118145

此时,node2的web ui也无法访问
在这里插入图片描述

再次提交任务,出现错误,无法运行任务

在这里插入图片描述

5)单词计数,使用自定义参数

重启集群

在这里插入图片描述

删除hdfs上以前创建的output文件夹

在这里插入图片描述

提交任务,使用之前上传的数据

flink run examples/batch/WordCount.jar --input hdfs://hadoop001:9000/input --output hdfs://hadoop001:9000/output

image-20230318161818134

查看结果

image-20230318161919032

杀掉hadoop001的master进程,并再次提交任务

image-20230318162011128

image-20230318162125670

再次删除hdfs上之前创建的output文件夹

在这里插入图片描述

再次提交任务,可以正常运行并查看结果,说明高可用搭建成功

image-20230318162218451

image-20230318162258346

8.工作原理

image-20230318162339591

六、Flink on Yarn模式集群搭建及测试

1.为什么要使用Flink on Yarn

  • yarn管理资源,可以按需使用,提高整个集群的资源利用率
  • 任务有优先级,可以根据优先级合理的安排任务运行作用
  • 基于yarn的调度系统,能够自动化的处理各个角色的容错

2.集群规划

跟standalone保持一致
服务器JobManagerTaskManagerhadoop001yyhadoop002yyhadoop003ny

3.修改yarn的配置

image-20230318172552808

4.启动相关的服务

  • zookeeper
  • hdfs
  • yarn
  • flink
  • historyserver(可选)

image-20230318163102576

启动历史服务器

image-20230318163202548

5.flink on yarn提交任务的模式

有两种模式

  • session模式 :会话模式
  • per-job模式:每任务模式

image-20230318163241950

6.Session模式提交任务

1)开启会话(session)

在这里插入图片描述

语法:

yarn-session.sh -n 2-tm 800-s 1-d

说明:

  • n:表示申请容器的数量,也就是worker的数量,也就是cpu的核心数
  • tm:表示给个worker(TaskManager)的内存大小
  • s:表示每个worker的slot的数量
  • d:表示后台运行

启动一个会话

yarn-session.sh -n 2 -tm 800 -s 1 -d

image-20230318165440184

此时的进程

image-20230318165616740

web ui的查看

在这里插入图片描述

image-20230318165726374

image-20230318165753985

image-20230318165813998
在这里插入图片描述

2)提交任务-单词计数

使用的默认的参数,提交任务
在这里插入图片描述

查看yarn的web ui

image-20230318170129754

image-20230318170153354

image-20230318170237753

3)再次提交任务

image-20230318170401039

再次查看yarn的web ui

在这里插入图片描述

7.关闭yarn-session

image-20230318170550643

关闭会话
在这里插入图片描述

查看进程
在这里插入图片描述

查看yarn的web ui

image-20230318170856929

8.Per-Job模式提交任务

1)语法
flink run -m yarn-cluster -yjm 1024 -ytm 1024 examples/batch/WordCount.jar 

说明:

  • m:jobmanager的地址
  • yjm:jobmanager的内存大小
  • ytm:taskmanager的内存大小
2)提交任务

image-20230318173249697

3)查看yarn的web ui

image-20230318182246540

执行过程中出现错误
在这里插入图片描述

解决错误,可以修改flink的配置

image-20230318174003186

分发配置文件,并重启flink

4)再次提交任务

image-20230318183041623

image-20230318183059616

5)查看jps,并没有相关的进程,也就是当任务执行完成后,进程自动关闭

image-20230318183132638

9.flink任务提交参数总结

在这里插入图片描述

image-20230318183302293

image-20230318183319544

image-20230318183354567

image-20230318183428368

image-20230318183444450

参考文章:

flink启动后web访问问题

Flink高手之路:Flink的环境搭建

org.apache.flink.core.fs.UnsupportedFileSystemSchemeException:Hadoop is not in the classpath/dependencies

flink 1.15.2集群搭建(Flink Standalone模式)

标签: flink 大数据 spark

本文转载自: https://blog.csdn.net/W_chuanqi/article/details/129740422
版权归原作者 W_chuanqi 所有, 如有侵权,请联系我们删除。

“Flink高手之路2-Flink集群的搭建”的评论:

还没有评论