一、拆分 map 和 array
1.执行Linux命令
cd /data/import/
sudo vi test_explode_map_array.txt
- 添加以下文件内容
小明 产品1,产品2,产品3 性别:男,年龄:24
小花 产品4,产品5,产品6 性别:女,年龄:22
2.创建表并加载数据
-- 开启智能本地模式
-- set hive.exec.mode.local.auto=true;
-- 创建表
create table test.test_explode_map_array(
name string,
prod_arr array<string>,
info_map map<string, string>)
row format delimited
-- 字段分隔符为'\t'
fields terminated by '\t'
collection items terminated by ','
map keys terminated by ':'
stored as textfile;
-- 加载数据(方法一)
load data local inpath '/data/import/test_explode_map_array.txt'
into table test.test_explode_map_array;
-- 加载数据(方法二)
insert into test.test_explode_map_array
select '小明', array('产品1', '产品2', '产品3'), str_to_map('性别:男,年龄:24');
insert into test.test_explode_map_array
select '小花', array('产品4', '产品5', '产品6'), str_to_map('性别:女,年龄:22');
3.查询结果1
map_keymap_value年龄24性别男年龄22性别女
select
-- explode拆分后必须加括号
explode(info_map) as (map_key, map_value)
from test.test_explode_map_array;
-- 查询其他字段, lateral view(侧视图, 虚拟表)
select
name, map_key, map_value
from test.test_explode_map_array
-- 必须去掉括号map_key, map_value
lateral view explode(info_map) tmp_table as map_key, map_value;
4.查询结果2
prod_arr_new产品1产品2产品3产品4产品5产品6
select
-- explode拆分数组
explode(prod_arr) as prod_arr_new
from test.test_explode_map_array;
5.查询结果3
nameprod_arr_new小明产品1小明产品2小明产品3小花产品4小花产品5小花产品6
-- 查询其他字段,lateral view(侧视图, 虚拟表)
select
name, prod_arr_new
from test.test_explode_map_array
lateral view explode(prod_arr) tmp_table as prod_arr_new;
6.Hive三类UDF
- UDF:用户自定义函数(user-defined function),输入一个值,返回一个值,一进一出
- UDAF:用户自定义聚合函数(user-defined aggregate function),输入多个值,返回一个值,多进一出
- UDTF:用户自定义表生成函数(user-defined table-generating function),输入一个值,返回多个值,一进多出
-- UDF:length\year\month\day ...
-- UDAF:sum\count\max ...
-- UDTF:explode
二、拆分 json
1.执行Linux命令
cd /data/import/
sudo vi test_explode_json.txt
- 添加以下文件内容
a:shandong,b:beijing,c:hebei|1,2,3,4,5,6,7,8,9|[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]
2.创建表并加载数据
-- 开启智能本地模式
-- set hive.exec.mode.local.auto=true;
-- 创建表
create table test.test_explode_json(
area string,
goods_id string,
sale_info string)
row format delimited
-- 字段分隔符为'|'
fields terminated by '|'
stored as textfile;
-- 加载数据(方法一)
load data local inpath '/data/import/test_explode_json.txt'
overwrite into table test.test_explode_json;
-- 加载数据(方法二)
insert into test.test_explode_json
values('a:shandong,b:beijing,c:hebei',
'1,2,3,4,5,6,7,8,9',
'[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]')
3.查询结果1
goods_id123456789
select
explode(split(goods_id,',')) as goods_id
from test.test_explode_json;
4.查询结果2
codeareaashandongbbeijingchebei
select
regexp_extract(area_new, '(.*):(.*)',1) as code
, regexp_extract(area_new, '(.*):(.*)',2) as arec
from test.test_explode_json
lateral view explode(split(area,',')) tmp_table as area_new
5.侧视图详解
lateral view + explode + split
结果集的行数是如何生成的?
- 查询1个字段
-- 9个元素= 9行
select
goods_id_new
from test.test_explode_json
lateral view explode(split(goods_id,',')) tmp_table as goods_id_new;
- 查询2个字段
-- 9个元素*1个元素 = 9行
select
goods_id_new,area
from test.test_explode_json
lateral view explode(split(goods_id,',')) tmp_table as goods_id_new;
- 查询3个字段
-- 9个元素*3个元素*1个元素=27行
select
goods_id_new,area_new,sale_info
from test.test_explode_json
lateral view explode(split(goods_id,',')) tmp_table as goods_id_new
lateral view explode(split(area,',')) tmp_table as area_new;
6.查询结果3
sourcemonthsalesusercountscore7fresh490019009.9jd2090789819.8jdmart698716009.0
- 第一步:将字段sale_info的"[{"和"}]"替换为空字符串
"[{"source":"7fresh","monthSales":4900,"userCount":1900,"score":"9.9"},{"source":"jd","monthSales":2090,"userCount":78981,"score":"9.8"},{"source":"jdmart","monthSales":6987,"userCount":1600,"score":"9.0"}]"
select
regexp_replace(sale_info, '\\[\\{|\\}\\]','')
from test.test_explode_json
- 第二步:以"},{"拆分为数组
select
explode(split(regexp_replace(sale_info, '\\[\\{|\\}\\]',''), '\\},\\{'))
from test.test_explode_json
- 第三步:将数组拆分为多行
select
sale_info_new
from test.test_explode_json
lateral view explode(split(regexp_replace(sale_info, '\\[\\{|\\}\\]',''), '\\},\\{')) tmp_table as sale_info_new
- 第四步:转换为json字符串
select
concat('{', sale_info_new, '}')
from test.test_explode_json
lateral view explode(split(regexp_replace(sale_info, '\\[\\{|\\}\\]',''), '\\},\\{')) tmp_table as sale_info_new
- 第五步:将json字符串转换为二维表
select
get_json_object(concat('{', sale_info_new, '}'), '$.source') as source
, get_json_object(concat('{', sale_info_new, '}'), '$.monthSales') as monthSales
, get_json_object(concat('{', sale_info_new, '}'), '$.userCount') as userCount
, get_json_object(concat('{', sale_info_new, '}'), '$.score') as score
from test.test_explode_json
lateral view explode(split(regexp_replace(sale_info, '\\[\\{|\\}\\]',''), '\\},\\{')) tmp_table as sale_info_new
三、多行(列)合并为一行(列)
region_categorysubclass东北-办公系固件,纸张,收纳具,信封,器具,美术,用品,装订机,标签东北-家具用具,椅子,桌子,书架东北-技术电话,配件,复印机,设备
-- concat(str1|col1, str2|col2, …)
-- 字符串合并,支持任意个字符串;
-- concat_ws(sep, str1, str2, ...)
-- 以sep为分隔符合并str1, str2, ...;如分隔符为null,则返回null;跳过合并值为null或空字符串的参数;
-- collect_set(col)去重汇总
-- 只支持基本数据类型(不支持复合数据类型),将某字段的项去重汇总,返回array数据类型;
-- collect_list(col)不去重汇总
select
CONCAT(region, '-',category) as region_category
, concat_ws(',', collect_set(subclass)) as `产品子类`
from sm.sm_order_total
group by CONCAT(region, '-',category)
四、一行(列)拆分为多行(列)
-- 通过以上查询语句来创建表
create table test.test_explode_split as
select
CONCAT(region, '-',category) as region_category
, concat_ws(',', collect_set(subclass)) as `产品子类`
from sm.sm_order_total
group by CONCAT(region, '-',category)
regioncategorysubclass_new东北办公系固件东北办公纸张东北办公收纳具东北办公信封东北办公器具东北办公美术东北办公用品东北办公装订机东北办公标签
select
regexp_extract(t.region_category, '(.*)-(.*)', 1) as region
, regexp_extract(t.region_category, '(.*)-(.*)', 2) as category
, subclass_new
from test.test_explode_split t
lateral view explode(split(t.subclass, ',')) tmp_table as subclass_new;
五、reflect函数
- 支持调用java函数
1.执行Linux命令
cd /data/import/
sudo vi test_reflect.txt
- 添加以下文件内容
11 配饰 7 7
12 配饰 9 5
13 配饰 5 7
14 服饰 9 5
15 服饰 9 4
16 配饰 7 5
17 服饰 8 3
18 配饰 6 5
19 服饰 5 4
20 配饰 9 4
2.调用java的max函数求两列最大值
use test;
-- 创建表
create table test.test_reflect(
order_id int comment '订单编号',
product string comment '产品',
quality int comment '质量',
service int comment '服务')
row format delimited
fields terminated by '\t';
-- 加载数据
load data local inpath '/data/import/test_reflect.txt'
into table test.test_reflect;
select
*
, reflect('java.lang.Math','max',quality, service) as max_score
from test.test_reflect
3.不同的行执行不同的java函数
- 配饰:求最大值
- 服饰:求最小值
select
t.order_id
, t.product
, t.quality
, t.service
, reflect('java.lang.Math', method_name, t.quality, t.service) as score
from
(
select
order_id
, product
, quality
, service
, case product when '配饰' then 'max'
when '服饰' then 'min' end as method_name
from test.test_reflect
) as t
版权归原作者 溺水的鱼X 所有, 如有侵权,请联系我们删除。