0


Storm 单机和集群环境部署教程

目录

下面是关于 Storm 的单机和集群环境部署教程,以及部署过程中的注意事项和 Java、Python 的使用案例。


一、Storm 单机环境部署

1. 环境准备

  • 操作系统:Linux(推荐 Ubuntu 20.04 或 CentOS 7)
  • Java:Storm 需要 Java 环境,推荐使用 OpenJDK 8 或 11。
  • ZooKeeper:Storm 依赖 ZooKeeper,需要安装和配置 ZooKeeper。

2. 安装 Java

在 Ubuntu 中:

  1. sudoapt update
  2. sudoaptinstall openjdk-11-jdk

在 CentOS 中:

  1. sudo yum install java-11-openjdk

验证 Java 安装:

  1. java-version

3. 安装 ZooKeeper

参考之前的 ZooKeeper 部署教程,安装并启动 ZooKeeper。

4. 下载并解压 Storm

访问 Storm 官方网站 下载最新版本的 Storm。

  1. wget https://downloads.apache.org/storm/apache-storm-2.4.0/apache-storm-2.4.0.tar.gz
  2. tar-xzvf apache-storm-2.4.0.tar.gz
  3. mv apache-storm-2.4.0 /usr/local/storm

5. 配置 Storm

  1. **编辑配置文件 storm.yaml**:在 /usr/local/storm/conf/storm.yaml 中添加以下内容:storm.zookeeper.servers:-"localhost"nimbus.seeds:["localhost"]storm.local.dir:"/usr/local/storm/data"supervisor.slots.ports:-6700-6701-6702-6703
  2. 配置环境变量:编辑 ~/.bashrc 文件,添加以下内容:exportSTORM_HOME=/usr/local/stormexportPATH=$PATH:$STORM_HOME/bin然后加载配置:source ~/.bashrc

6. 启动 Storm

  1. 启动 Nimbus(主节点)storm nimbus &
  2. 启动 Supervisor(工作节点)storm supervisor &
  3. 启动 UI 服务storm ui &
  4. 启动 Logviewer 服务(可选)storm logviewer &

7. 验证 Storm 是否正常运行

访问 Storm UI 界面

  1. http://localhost:8080

,可以查看集群的运行状态。

8. Storm 单机部署的注意事项

  • Java 版本:确保 Java 环境配置正确。
  • ZooKeeper:确保 ZooKeeper 服务正常运行,且 Storm 能够连接到 ZooKeeper。
  • 内存与资源配置:根据机器配置调整 Storm 的内存和资源使用。
  • 日志管理:配置 Logviewer 并监控日志文件。

二、Storm 集群环境部署

1. 环境准备

  • 多台服务器:至少 3 台(推荐 5 台以上,1 台作为 Nimbus,其他作为 Supervisor)
  • 操作系统:Linux(推荐 Ubuntu 20.04 或 CentOS 7)
  • Java:在所有节点上安装 Java
  • ZooKeeper:在集群中安装并配置 ZooKeeper

2. 配置 Storm 集群

2.1 安装 Storm

在每台服务器上安装 Storm(参考单机环境部署的步骤)。

2.2 配置 Nimbus 节点

在 Nimbus 节点上编辑

  1. storm.yaml

文件:

  1. storm.zookeeper.servers:-"zookeeper1"-"zookeeper2"-"zookeeper3"nimbus.seeds:["nimbus-node"]storm.local.dir:"/usr/local/storm/data"storm.cluster.mode:"distributed"supervisor.slots.ports:-6700-6701-6702-6703
2.3 配置 Supervisor 节点

在每个 Supervisor 节点上编辑

  1. storm.yaml

文件:

  1. storm.zookeeper.servers:-"zookeeper1"-"zookeeper2"-"zookeeper3"nimbus.seeds:["nimbus-node"]storm.local.dir:"/usr/local/storm/data"storm.cluster.mode:"distributed"supervisor.slots.ports:-6700-6701-6702-6703
2.4 启动 Storm 集群

在 Nimbus 节点上启动 Nimbus 和 UI 服务:

  1. storm nimbus &
  2. storm ui &

在每个 Supervisor 节点上启动 Supervisor 服务:

  1. storm supervisor &

3. 验证 Storm 集群状态

访问 Nimbus 节点的 Storm UI 界面

  1. http://nimbus-node:8080

,可以查看集群中所有 Supervisor 节点的状态。

4. Storm 集群部署的注意事项

  • ZooKeeper 配置:确保所有 Storm 节点可以正常连接 ZooKeeper。
  • 网络和端口:确保 Nimbus 和 Supervisor 节点之间的网络连接正常,端口未被防火墙阻挡。
  • 内存与资源配置:根据节点硬件配置合理分配内存和 CPU 资源,避免资源不足或浪费。
  • 监控与日志管理:使用监控工具监控 Storm 集群状态,并配置日志收集和分析工具。

三、Storm 使用案例

1. Java 示例:编写简单的 Storm Topology

1.1 添加 Maven 依赖

  1. pom.xml

中添加 Storm 依赖:

  1. <dependencies><dependency><groupId>org.apache.storm</groupId><artifactId>storm-core</artifactId><version>2.4.0</version></dependency><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-api</artifactId><version>1.7.30</version></dependency></dependencies>
1.2 实现一个简单的 Topology
  1. importorg.apache.storm.Config;importorg.apache.storm.LocalCluster;importorg.apache.storm.topology.TopologyBuilder;importorg.apache.storm.tuple.Fields;importorg.apache.storm.utils.Utils;publicclassWordCountTopology{publicstaticvoidmain(String[] args){// 创建TopologyBuilderTopologyBuilder builder =newTopologyBuilder();// 设置Spout和Bolt
  2. builder.setSpout("spout",newRandomSentenceSpout());
  3. builder.setBolt("split",newSplitSentenceBolt()).shuffleGrouping("spout");
  4. builder.setBolt("count",newWordCountBolt()).fieldsGrouping("split",newFields("word"));// 配置Config config =newConfig();
  5. config.setDebug(true);// 本地模式运行LocalCluster cluster =newLocalCluster();
  6. cluster.submitTopology("word-count", config, builder.createTopology());// 运行一段时间后关闭Utils.sleep(10000);
  7. cluster.shutdown();}}

2. Python 示例:使用

  1. streamparse

编写简单的 Storm Topology

2.1 安装
  1. streamparse
  1. pip install streamparse
2.2 创建 Storm Topology
  1. 创建项目sparse quickstart word_countcd word_countsparse run
  2. **编辑 word_count/word_count/spouts/words.py**:from streamparse import SpoutclassWordSpout(Spout):defnext_tuple(self): words =["stream","parse","storm","python","topology"] self.emit([random.choice(words)])
  3. **编辑 word_count/word_count/bolts/wordcount.py**:from collections import Counterfrom streamparse import BoltclassWordCountBolt(Bolt):definitialize(self, conf, ctx): self.counts = Counter()defprocess(self, tup): word = tup.values[0] self.counts[word]+=1 self.emit([word, self.counts[word]]) self.log('%s: %d'%(word, self.counts[word]))
  4. **编辑 word_count/word_count/topologies/wordcount.py**:from streamparse import Grouping, Topologyfrom spouts.words import WordSpoutfrom bolts.wordcount import WordCountBoltclassWordCountTopology(Topology): word_spout = WordSpout.spec() count_bolt = WordCountBolt.spec(inputs=[word_spout], groupings={WordCountBolt: Grouping.fields('word')})
  5. 运行 Topologysparse submit

总结

通过以上步骤,我们完成了 Storm 的单机和集群环境部署,并实现了 Java 和 Python 的简单 Topology 示例。Storm 作为一款分布式实时计算系统,能够处理大量的实时数据流,广泛应用于实时数据分析、监控和处理场景。

部署过程中的注意事项

  • ZooKeeper 配置:确保 Storm 集群能够正常连接 ZooKeeper。
  • 资源管理:根据实际应用场景合理配置内存和 CPU 资源,避免资源浪费或不足。
  • 网络配置:确保所有节点之间的网络连接正常,端口开放。
  • 监控和日志管理:配置监控工具和日志分析工具,及时发现和处理问题,保障 Storm 集群的稳定运行。
标签: storm 大数据 集群

本文转载自: https://blog.csdn.net/qq_42568323/article/details/141101885
版权归原作者 闲人编程 所有, 如有侵权,请联系我们删除。

“Storm 单机和集群环境部署教程”的评论:

还没有评论