0


Qwen2.5-Coder-7B-Instruct模型本地部署,并实现简单的web对话

在自己电脑上部署一个聊天机器人,实现简单的chat界面,适用于千问2或者千问2.5的模型。windows环境也通用,修改好对应的路径就可以。

该Qwen-Coder-7B模型加载进显存后大约占用14G,支持流式传输,界面示例如图:

部署流程:

1、配置环境

在已经有torch+cuda的条件下,还需要以下几个库:

    pip install  transformers
    pip install  accelerate
    pip install  gradio

其中transformers库需满足版本大于等于4.37.0,用来加载模型,accelerate用于加速模型,gradio用于生成前端界面。

2、下载模型文件

下载模型的地方:(魔搭社区)

点击此处下载模型:

提供了很多种下载方式,选择一种方式下载即可:

3、加载模型

下面代码是官方的示例

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "path/to/your/model"
# 把这里修改成你下载的模型位置,比如我是/home/LLM/Qwen/Qwen2_5-Coder-7B-Instruct

model = AutoModelForCausalLM.from_pretrained( # 加载模型
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name) # 加载分词器

prompt = "Give me a short introduction to large language model.Answer it in Chinese"
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)

response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(response)

4、实现简单的chat功能,进行web访问

首先导入需要用到的库和几个全局变量

from threading import Thread
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

# 分别是用户头像和聊天机器人的头像(需要在gradio工作的项目下,这里我的项目名为LLM)
user_icon = '/home/LLM/Qwen-main/gradio_avatar_images/user_icon.jpeg'
bot_icon = '/home/LLM/Qwen-main/gradio_avatar_images/bot_icon.jpg'

model_name = '/home/LLM/Qwen/Qwen2_5-Coder-7B-Instruct' # 模型存放位置
qwen_chat_history = [
    {"role": "system", "content": "You are a helpful assistant."}
]# 储存历史对话

定义一个加载模型的函数:

def _load_model():
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype="auto",
        device_map="auto",
    )
    streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True)
    return model, tokenizer, streamer
TextIteratorStreamer用于生成流式输出。

然后是整个聊天界面的一个实现,使用gradio库实现

with gr.Blocks() as demo:
    model, tokenizer, streamer = _load_model() # 载入模型
    chatbot = gr.Chatbot(
        height=600, # 界面高度,可以自己调
        avatar_images=(user_icon, bot_icon)
    )# Chatbot还涉及很多参数,如需了解清查阅官方技术文档

    msg = gr.Textbox()
    clear = gr.ClearButton([msg, chatbot])
    
    # 清除历史记录
    def _clean_history(): 
        global qwen_chat_history
        qwen_chat_history = []

    #生成回复
    def _response(message, chat_history):
        qwen_chat_history.append({"role": "user", "content": message}) # 拼接历史对话

        history_str = tokenizer.apply_chat_template(
            qwen_chat_history,
            tokenize=False,
            add_generation_prompt=True
        )

        inputs = tokenizer(history_str, return_tensors='pt').to(model.device)

        chat_history.append([message, ""])

        # 推理参数
        generation_kwargs = dict(
            **inputs,
            streamer=streamer,
            max_new_tokens=2048,
            num_beams=1,
            do_sample=True,
            top_p=0.8,
            temperature=0.3,
        )

        # 监控流失输出结果
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()

        for new_text in streamer:
            chat_history[-1][1] += new_text
            yield "", chat_history

        qwen_chat_history.append(
            {"role": "assistant", "content": chat_history[-1][1]}
        )

    clear.click(_clean_history())
    msg.submit(_response, [msg, chatbot], [msg, chatbot])

demo.queue().launch(
    share=False,
    server_port=8000,
    server_name="127.0.0.1",
) # 绑定8000端口,进行web访问

运行代码,会生成一个链接:

直接点开或者复制到浏览器打开就可以进入聊天界面:

完整代码:

from threading import Thread
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

user_icon = '/home/lhp/Desktop/LLM/Qwen-main/gradio_avatar_images/user_icon.jpeg'
bot_icon = '/home/lhp/Desktop/LLM/Qwen-main/gradio_avatar_images/bot_icon.jpg'

model_name = '/home/lhp/Desktop/LLM/Qwen/Qwen2_5-Coder-7B-Instruct'
qwen_chat_history = [
    {"role": "system", "content": "You are a helpful assistant."}
]

def _load_model():
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype="auto",
        device_map="auto",
    )
    streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True)
    return model, tokenizer, streamer

with gr.Blocks() as demo:
    model, tokenizer, streamer = _load_model()
    chatbot = gr.Chatbot(
        height=600,
        avatar_images=(user_icon, bot_icon)
    )

    msg = gr.Textbox()
    clear = gr.ClearButton([msg, chatbot])

    def _clean_history():
        global qwen_chat_history
        qwen_chat_history = []

    def _response(message, chat_history):
        qwen_chat_history.append({"role": "user", "content": message}) # 拼接历史对话

        history_str = tokenizer.apply_chat_template(
            qwen_chat_history,
            tokenize=False,
            add_generation_prompt=True
        )

        inputs = tokenizer(history_str, return_tensors='pt').to(model.device)

        chat_history.append([message, ""])

        # 拼接推理参数
        generation_kwargs = dict(
            **inputs,
            streamer=streamer,
            max_new_tokens=2048,
            num_beams=1,
            do_sample=True,
            top_p=0.8,
            temperature=0.3,
        )

        # 启动线程,用以监控流失输出结果
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()

        for new_text in streamer:
            chat_history[-1][1] += new_text
            yield "", chat_history

        qwen_chat_history.append(
            {"role": "assistant", "content": chat_history[-1][1]}
        )

    clear.click(_clean_history())
    msg.submit(_response, [msg, chatbot], [msg, chatbot])

demo.queue().launch(
    share=False,
    server_port=8000,
    server_name="127.0.0.1",
)

本文转载自: https://blog.csdn.net/qq_49855405/article/details/143667833
版权归原作者 qq_49855405 所有, 如有侵权,请联系我们删除。

“Qwen2.5-Coder-7B-Instruct模型本地部署,并实现简单的web对话”的评论:

还没有评论