0


FLINK CDC postgresql (Stream与SQL)

Postgres CDC Connector — CDC Connectors for Apache Flink® documentation

flink cdc捕获postgresql数据

1)更改配置文件

需要更改

linux>vi postgresql.conf

更改wal日志方式为logical

wal_level = logical # minimal, replica, or logical

更改solts最大数量(默认值为10),flink-cdc默认一张表占用一个

slotsmax_replication_slots = 20 # max number of replication slots

更改wal发送最大进程数(默认值为10),这个值和上面的solts设置一样

max_wal_senders = 20 # max number of walsender processes

中断那些停止活动超过指定毫秒数的复制连接,可以适当设置大一点(默认60s)

wal_sender_timeout = 180s # in milliseconds; 0 disable

2)注意

注意:wal_level = logical源表的数据修改时,默认的逻辑复制流只包含历史记录的primary key,如果需要输出更新记录的历史记录的所有字段,需要在表级别修改参数:ALTER TABLE tableName REPLICA IDENTITY FULL; 这样才能捕获到源表所有字段更新后的值

  1. 将jar包导入flink lib目录

flink-sql-connector-postgres-cdc-2.2.0.jar 到 flink/lib下

4)新建用户并且给用户复制流权限
-- pg新建用户

CREATE USER user WITH PASSWORD 'pwd';
  1. 给用户复制流权限
ALTER ROLE user replication;
  1. 给用户登录数据库权限
grant CONNECT ON DATABASE test to user;

7)把当前库public下所有表查询权限赋给用户

GRANT SELECT ON ALL TABLES IN SCHEMA public TO user;
  1. 发布表

-- 设置发布为true

update pg_publication set puballtables=true where pubname is not null;

-- 把所有表进行发布

CREATE PUBLICATION dbz_publication FOR ALL TABLES;

-- 查询哪些表已经发布

select * from pg_publication_tables;
  1. 更改表的复制标识包含更新和删除的值

-- 更改复制标识包含更新和删除之前值

ALTER TABLE test0425 REPLICA IDENTITY FULL;

-- 查看复制标识(为f标识说明设置成功)

select relreplident from pg_class where relname='testname';

到这一步,设置已经完全可以啦,上面步骤都是必须的

flink sql 端 创建postgresql 连接器

linux>bin/sql-client.sh     //进入flink sql客户端

CREATE TABLE flink_cdc_source (
id INT,
name STRING
) WITH (
'connector' = 'postgres-cdc',
'hostname' = 'pg数据库IP地址',
'port' = '5432',
'database-name' = 'postgres',
'schema-name' = 'public',
'username' = 'postgres',
'password' = '123456',
'table-name' = 'pg_cdc_source',
'decoding.plugin.name' = 'pgoutput'
);

错误: 复制槽名 "flink" 已经存在

( 解决复制槽名 "flink" 已经存在)

1.切换用户

# su - postgres

2.登陆用户

-bash-4.2$ psql -U postgres
  1. 查看复制槽
postgres=# select * from pg_replication_slots; 查看复制槽

  1. 删除复制槽
SELECT * FROM pg_drop_replication_slot('flink'); 删除复制槽

5.验证

postgres=# select * from pg_replication_slots; 查看复制槽

Flink CDC Stream Postgres变更捕获 (java)

package pg;
import com.ververica.cdc.connectors.postgres.PostgreSQLSource;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.util.Properties;

public class FlinkCdcPg {
public static void main(String[]args) throws Exception {
Properties properties = new Properties();
properties.setProperty("snapshot.mode", "initial");
properties.setProperty("decimal.handling.mode", "double"); 
properties.setProperty("database.serverTimezone", "GMT+8"); //设置时区

SourceFunction<String>sourceFunction = PostgreSQLSource.<String>builder()
.hostname("Pg数据库IP地址")
.port(5432)
.database("postgres") // monitor postgresdatabase
.schemaList("public") // monitor inventory schema
.tableList("public.sink2") // monitor productstable
.username("postgres")
.password("123456")
.decodingPluginName("pgoutput") // pg解码插件
.slotName("t_table_slot") // 复制槽名称 不能重复
.deserializer(new JsonDebeziumDeserializationSchema())// converts SourceRecord to JSON String
.debeziumProperties(properties)
.build();

StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();

env
.addSource(sourceFunction)
.print().setParallelism(1); // use parallelism1 for sink to keep message ordering

env.execute();

}
}

Flink CDC SQL TABLE pg读取(java)

package pg;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.TableResult;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

public class FlinkCdcOracleExample {
public static void main(String[]args) throws Exception {

StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.disableOperatorChaining();
StreamTableEnvironment tableEnv =StreamTableEnvironment.create(env);

String sourceDDL ="CREATE TABLEpg_source (\n" +
" ID INT, \n" +
" NAME STRING, \n" +
" PRIMARY KEY (ID) NOT ENFORCED \n" +
" ) WITH (\n" +
" 'connector' = 'postgres-cdc',\n" +
" 'hostname' = 'Pg数据库IP地址',\n" +
" 'port' = '5432',\n" +
" 'username' = 'postgres',\n" +
" 'password' = '123456',\n" +
" 'database-name' = 'postgres',\n" +
" 'schema-name' = 'public',\n" + // 注意这里要大写
" 'table-name' = 'sink2',\n" +
" 'debezium.log.mining.strategy'='online_catalog'\n" +
)";

//执行source表ddl
tableEnv.executeSql(sourceDDL);
TableResult tableResult =tableEnv.executeSql("select * from pg_source");
tableResult.print();
env.execute();

}
}
标签: postgresql flink java

本文转载自: https://blog.csdn.net/Mogeko1/article/details/128673333
版权归原作者 房石阳明i 所有, 如有侵权,请联系我们删除。

“FLINK CDC postgresql (Stream与SQL)”的评论:

还没有评论