iceberg 是一种开放的表格式管理,解决大数据数据中结构化,非结构化和半结构化不统一的问题。主要是通过对表的管理实现增删改查,同时支持历史回滚(版本旅行)等操作。下层支持hadoop,s3,对象存储,上层支持hive,spark,flink 等应用。实现在中间把两部分隔离开来,实现一种对接和数据管理的标准。有这个标准,不管是谁建的表,都可以操作和访问。比如我用spark创建表,flink去读取的时候,可以读取到数据。不存在组件不同无法识别的情况。
在idea进行pom.xml配置
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.gbicc</groupId>
<artifactId>bigdata</artifactId>
<version>1.0-SNAPSHOT</version>
<inceptionYear>2008</inceptionYear>
<properties>
<scala.version>2.12.18</scala.version>
</properties>
<repositories>
<repository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</pluginRepository>
</pluginRepositories>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.4</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs</groupId>
<artifactId>specs</artifactId>
<version>1.2.5</version>
<scope>test</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.iceberg</groupId>
<artifactId>iceberg-core</artifactId>
<version>1.4.2</version>
</dependency>
<dependency>
<groupId>io.minio</groupId>
<artifactId>minio</artifactId>
<version>8.5.7</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-s3 -->
<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>aws-java-sdk-s3</artifactId>
<version>1.12.620</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-aws</artifactId>
<version>3.2.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.2.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.iceberg/iceberg-data -->
<dependency>
<groupId>org.apache.iceberg</groupId>
<artifactId>iceberg-data</artifactId>
<version>1.4.2</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.4.2</version> <!-- 根据实际情况选择版本号 -->
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.12</artifactId>
<version>3.4.2</version> <!-- 根据实际情况选择版本号 -->
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
<version>3.4.2</version> <!-- 根据实际情况选择版本号 -->
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.iceberg/iceberg-spark -->
<dependency>
<groupId>org.apache.iceberg</groupId>
<artifactId>iceberg-spark</artifactId>
<version>1.4.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.iceberg/iceberg-spark-runtime-3.3 -->
<dependency>
<groupId>org.apache.iceberg</groupId>
<artifactId>iceberg-spark-runtime-3.4_2.12</artifactId>
<version>1.4.2</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.14.2</version>
</dependency>
<dependency>
<groupId>org.apache.iceberg</groupId>
<artifactId>iceberg-data</artifactId>
<version>1.4.2</version>
</dependency>
<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>aws-java-sdk-s3</artifactId>
<version>1.12.620</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-aws</artifactId>
<version>3.2.2</version>
</dependency>
<dependency>
<groupId>org.apache.iceberg</groupId>
<artifactId>iceberg-aws</artifactId>
<version>1.4.2</version>
</dependency>
<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>aws-java-sdk-bundle</artifactId>
<version>1.11.375</version>
</dependency>
<dependency>
<groupId>org.apache.iceberg</groupId>
<artifactId>iceberg-parquet</artifactId>
<version>1.4.2</version>
</dependency>
<dependency>
<groupId>io.delta</groupId>
<artifactId>delta-core_2.12</artifactId>
<version>2.4.0</version>
</dependency>
<dependency>
<groupId>io.delta</groupId>
<artifactId>delta-spark_2.12</artifactId>
<version>3.0.0</version>
</dependency>
</dependencies>
<reporting>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
</configuration>
</plugin>
</plugins>
</reporting>
</project>
下面进行代码编写
package org.icebergtest
import org.apache.iceberg.{PartitionSpec, Schema}
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.iceberg.catalog.TableIdentifier
import org.apache.iceberg.spark.SparkSchemaUtil
import org.apache.iceberg.types.Types
import org.apache.spark.sql.types._
import org.apache.iceberg._
import org.apache.iceberg.catalog.TableIdentifier
import org.apache.iceberg.data.GenericRecord
import org.apache.iceberg.types.{Types => _, _}
object icebergspark {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder().master("local").appName("test")
/* .config("fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider")
.config("spark.hadoop.fs.s3a.access.key", "minioadmin")
.config("spark.hadoop.fs.s3a.secret.key", "minioadmin")
.config("spark.hadoop.fs.s3a.endpoint", "http://127.0.0.1:9000")
.config("spark.hadoop.fs.s3a.connection.ssl.enabled", "false")
.config("spark.hadoop.fs.s3a.path.style.access", "true")
.config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
.config("spark.debug.maxToStringFields", "2048")*/
.config("spark.hadoop.fs.s3a.access.key", "minioadmin")
.config("spark.hadoop.fs.s3a.secret.key", "minioadmin")
.config("spark.hadoop.spark.hadoop.fs.s3a.endpoint", "http://127.0.0.1:9000")
.config("spark.hadoop.fs.s3a.connection.ssl.enabled", "false")
.config("spark.hadoop.fs.s3a.path.style.access", "true")
.config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
.config("spark.hadoop.fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider")
.config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
//指定hadoop catalog,catalog名称为hadoop_prod
.config("spark.sql.catalog.hadoop_prod", "org.apache.iceberg.spark.SparkCatalog")
.config("spark.sql.catalog.hadoop_prod.type", "hadoop")
.config("spark.sql.catalog.hadoop_prod.hadoop.fs.s3a.access.key", "minioadmin")
.config("spark.sql.catalog.hadoop_prod.hadoop.fs.s3a.secret.key", "minioadmin")
.config("spark.sql.catalog.hadoop_prod.hadoop.fs.s3a.endpoint", "http://127.0.0.1:9000")
.config("spark.sql.catalog.hadoop_prod.warehouse", "s3a://test1/")
.config("spark.sql.extensions", "org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions")
.getOrCreate()
import org.apache.iceberg.spark.SparkSessionCatalog
// 将 Iceberg 的 SparkSessionCatalog 注册到 Spark 中// 将 Iceberg 的 SparkSessionCatalog 注册到 Spark 中
// 将 Iceberg 的 SparkSessionCatalog 注册到 Spark 中
//1.创建Iceberg表,并插入数据
//spark.sql("create table hadoop_prod.mydb.mytest (id int,name string,age int) using iceberg".stripMargin)
spark.sql(
"""
|insert into hadoop_prod.mydb.mytest values (1,"zs",18),(2,"ls",19),(3,"ww",20)
""".stripMargin)
//1.SQL 方式读取Iceberg中的数据
// spark.sql("select * from hadoop_prod.mydb.mytest").show()
spark.sql(
"""
|select * from hadoop_prod.mydb.mytest VERSION AS OF 4696493712637386339;
""".stripMargin).show()
/**
* 2.使用Spark查询Iceberg中的表除了使用sql 方式之外,还可以使用DataFrame方式,建议使用SQL方式
*/
//第一种方式使用DataFrame方式查询Iceberg表数据snapshots,history,manifests,files
val frame1: DataFrame = spark.table("hadoop_prod.mydb.mytest.snapshots")
frame1.show()
val frame2: DataFrame = spark.table("hadoop_prod.mydb.mytest.history")
frame2.show()
// spark.read.option("snapshot-id","4696493712637386339"). format("iceberg").load("3a://test/mydb/mytest")
//第二种方式使用DataFrame加载 Iceberg表数据
val frame3: DataFrame = spark.read.format("iceberg").load("hadoop_prod.mydb.mytest")
frame3.show()
}
}
通过上面的例子,直接复制执行
版权归原作者 smileyboy2009 所有, 如有侵权,请联系我们删除。