0


推土机距离到Wassertein距离

推土机距离(Earth Mover’s Distance)

对于离散概率分布,推土机距离又称为

     W
    
    
     a
    
    
     s
    
    
     s
    
    
     e
    
    
     r
    
    
     s
    
    
     t
    
    
     e
    
    
     i
    
    
     n
    
   
   
    \mathrm{Wasserstein}
   
  
 Wasserstein距离。如果将不同的概率分布看成不同的沙土堆,则推土机距离就是将一个沙土堆转换成另一个沙土堆所需的最小总工作量。假定有两个离散的概率分布
 
  
   
    
     x
    
    
     ∼
    
    
     
      P
     
     
      r
     
    
   
   
    x\sim P_r
   
  
 x∼Pr​和
 
  
   
    
     y
    
    
     ∼
    
    
     
      P
     
     
      θ
     
    
   
   
    y\sim P_\theta
   
  
 y∼Pθ​,其中每个概率分布都有
 
  
   
    
     l
    
   
   
    l
   
  
 l种可能结果,如下图所示给出的两个概率分布特例


计算推土机距离是一个优化问题,从一个沙土堆到另一个沙土堆无数种方案进沙土传输迁移,所以需要找到一个最佳的传输方案

     γ
    
    
     (
    
    
     x
    
    
     ,
    
    
     y
    
    
     )
    
   
   
    \gamma(x,y)
   
  
 γ(x,y)。根据上图实例,则需要如下约束条件
  
   
    
     
      {
     
     
      
       
        
         
          
           
            ∑
           
           
            x
           
          
          
           γ
          
          
           (
          
          
           x
          
          
           ,
          
          
           y
          
          
           )
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           y
          
          
           )
          
         
        
       
      
      
       
        
         
          
           
            ∑
           
           
            y
           
          
          
           γ
          
          
           (
          
          
           x
          
          
           ,
          
          
           y
          
          
           )
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           x
          
          
           )
          
         
        
       
      
     
    
    
     \left\{\begin{aligned}\sum\limits_{x}\gamma(x,y)=P_\theta (y)\\\sum\limits_{y}\gamma(x,y)=P_r(x)\end{aligned}\right.
    
   
  ⎩⎪⎪⎪⎨⎪⎪⎪⎧​x∑​γ(x,y)=Pθ​(y)y∑​γ(x,y)=Pr​(x)​
 
  
   
    
     γ
    
    
     (
    
    
     x
    
    
     ,
    
    
     y
    
    
     )
    
    
     ∈
    
    
     Π
    
    
     (
    
    
     
      P
     
     
      r
     
    
    
     ,
    
    
     
      P
     
     
      θ
     
    
    
     )
    
   
   
    \gamma(x,y)\in \Pi(P_r,P_\theta)
   
  
 γ(x,y)∈Π(Pr​,Pθ​)为联合概率分布,并且
 
  
   
    
     Π
    
    
     (
    
    
     
      P
     
     
      r
     
    
    
     ,
    
    
     
      P
     
     
      θ
     
    
    
     )
    
   
   
    \Pi(P_r,P_\theta)
   
  
 Π(Pr​,Pθ​)的边缘分布为
 
  
   
    
     
      P
     
     
      r
     
    
    
     ,
    
    
     
      P
     
     
      θ
     
    
   
   
    P_r,P_\theta
   
  
 Pr​,Pθ​。此时推土机距离为每一个
 
  
   
    
     γ
    
    
     (
    
    
     x
    
    
     ,
    
    
     y
    
    
     )
    
   
   
    \gamma(x,y)
   
  
 γ(x,y)乘以
 
  
   
    
     x
    
   
   
    x
   
  
 x到
 
  
   
    
     y
    
   
   
    y
   
  
 y的欧式距离之和的最小值,具体公式为
  
   
    
     
      
       E
      
      
       M
      
      
       D
      
     
     
      (
     
     
      
       P
      
      
       r
      
     
     
      ,
     
     
      
       P
      
      
       θ
      
     
     
      )
     
     
      =
     
     
      
       
        inf
       
       
        ⁡
       
      
      
       
        γ
       
       
        ∈
       
       
        Π
       
      
     
     
      
       ∑
      
      
       
        x
       
       
        ,
       
       
        y
       
      
     
     
      ∥
     
     
      x
     
     
      −
     
     
      y
     
     
      ∥
     
     
      γ
     
     
      (
     
     
      x
     
     
      ,
     
     
      y
     
     
      )
     
     
      =
     
     
      
       
        inf
       
       
        ⁡
       
      
      
       
        γ
       
       
        ∈
       
       
        Π
       
      
     
     
      
       E
      
      
       
        (
       
       
        x
       
       
        ,
       
       
        y
       
       
        )
       
       
        ∼
       
       
        γ
       
      
     
     
      ∥
     
     
      x
     
     
      −
     
     
      y
     
     
      ∥
     
    
    
     \mathrm{EMD}(P_r,P_\theta)=\inf\limits_{\gamma\in \Pi}\sum\limits_{x,y}\|x-y\|\gamma(x,y)=\inf\limits_{\gamma\in \Pi}\mathbb{E}_{(x,y)\sim\gamma}\|x-y\|
    
   
  EMD(Pr​,Pθ​)=γ∈Πinf​x,y∑​∥x−y∥γ(x,y)=γ∈Πinf​E(x,y)∼γ​∥x−y∥进一步令
 
  
   
    
     Γ
    
    
     =
    
    
     γ
    
    
     (
    
    
     x
    
    
     ,
    
    
     y
    
    
     )
    
   
   
    \Gamma=\gamma(x,y)
   
  
 Γ=γ(x,y),
 
  
   
    
     D
    
    
     =
    
    
     ∥
    
    
     x
    
    
     ,
    
    
     y
    
    
     ∥
    
   
   
    D=\|x,y\|
   
  
 D=∥x,y∥,其中
 
  
   
    
     Γ
    
    
     ,
    
    
     D
    
    
     ∈
    
    
     
      R
     
     
      
       l
      
      
       ×
      
      
       l
      
     
    
   
   
    \Gamma,D\in \mathbb{R}^{l\times l}
   
  
 Γ,D∈Rl×l,则上式可以化简为
  
   
    
     
      
       E
      
      
       M
      
      
       D
      
     
     
      (
     
     
      
       P
      
      
       r
      
     
     
      ,
     
     
      
       P
      
      
       θ
      
     
     
      )
     
     
      =
     
     
      
       
        inf
       
       
        ⁡
       
      
      
       
        γ
       
       
        ∈
       
       
        Π
       
      
     
     
      ⟨
     
     
      D
     
     
      ,
     
     
      γ
     
     
      
       ⟩
      
      
       F
      
     
    
    
     \mathrm{EMD}(P_r,P_\theta)=\inf\limits_{\gamma\in \Pi}\langle D,\gamma \rangle_{F}
    
   
  EMD(Pr​,Pθ​)=γ∈Πinf​⟨D,γ⟩F​其中
 
  
   
    
     ⟨
    
    
     ,
    
    
     ⟩
    
   
   
    \langle , \rangle
   
  
 ⟨,⟩表示斐波那契内积,即对应元素相乘再相加,矩阵
 
  
   
    
     Γ
    
   
   
    \Gamma
   
  
 Γ和
 
  
   
    
     D
    
   
   
    D
   
  
 D的热力示意图如下所示

线性规划求解

求解推土机距离中的最优传输方案可以利用线性规划标准型来求解。给定一个向量

     x
    
    
     ∈
    
    
     
      R
     
     
      n
     
    
   
   
    x\in \mathbb{R}^n
   
  
 x∈Rn,线性目标标准型的优化形式如下所示
  
   
    
     
      
       
        
         
          
           min
          
          
           ⁡
          
         
         
          x
         
        
       
      
      
       
        
         
          z
         
         
          =
         
         
          
           c
          
          
           ⊤
          
         
         
          x
         
        
       
      
     
     
      
       
        
         
          s
         
         
          .
         
         
          t
         
         
          .
         
        
       
      
      
       
        
         
          {
         
         
          
           
            
             
              
               A
              
              
               x
              
             
            
           
           
            
             
              
              
               =
              
              
               b
              
             
            
           
          
          
           
            
             
              x
             
            
           
           
            
             
              
              
               ≥
              
              
               0
              
             
            
           
          
         
        
       
      
     
    
    
     \begin{array}{rl}\min\limits_{x}&z=c^{\top}x\\\mathrm{s.t.}&\left\{\begin{aligned}Ax&=b\\x&\ge 0\end{aligned}\right.\end{array}
    
   
  xmin​s.t.​z=c⊤x{Axx​=b≥0​​其中
 
  
   
    
     c
    
    
     ∈
    
    
     
      R
     
     
      n
     
    
   
   
    c\in\mathbb{R}^n
   
  
 c∈Rn,
 
  
   
    
     A
    
    
     =
    
    
     ∈
    
    
     
      R
     
     
      
       m
      
      
       ×
      
      
       n
      
     
    
   
   
    A=\in \mathbb{R}^{m\times n}
   
  
 A=∈Rm×n,
 
  
   
    
     b
    
    
     ∈
    
    
     
      R
     
     
      m
     
    
   
   
    b\in \mathbb{R}^m
   
  
 b∈Rm。根据以上实例将推土机距离转化为线性规划标准型,首先将矩阵
 
  
   
    
     Γ
    
   
   
    \Gamma
   
  
 Γ和
 
  
   
    
     D
    
   
   
    D
   
  
 D进行向量化,则有
  
   
    
     
      
       
        
         x
        
       
      
      
       
        
         
         
          =
         
         
          
           v
          
          
           e
          
          
           c
          
         
         
          (
         
         
          Γ
         
         
          )
         
         
          ∈
         
         
          
           R
          
          
           n
          
         
        
       
      
     
     
      
       
        
         c
        
       
      
      
       
        
         
         
          =
         
         
          
           v
          
          
           e
          
          
           c
          
         
         
          (
         
         
          D
         
         
          )
         
         
          ∈
         
         
          
           R
          
          
           n
          
         
        
       
      
     
    
    
     \begin{aligned}x&=\mathrm{vec}(\Gamma)\in\mathbb{R}^{n}\\c&=\mathrm{vec}(D)\in\mathbb{R}^{n}\end{aligned}
    
   
  xc​=vec(Γ)∈Rn=vec(D)∈Rn​并且有
 
  
   
    
     n
    
    
     =
    
    
     
      l
     
     
      2
     
    
   
   
    n=l^2
   
  
 n=l2,将目标分布进行拼接则有
  
   
    
     
      b
     
     
      =
     
     
      
       [
      
      
       
        
         
          
           
            P
           
           
            r
           
          
         
        
       
       
        
         
          
           
            P
           
           
            θ
           
          
         
        
       
      
      
       ]
      
     
    
    
     b=\left[\begin{array}{c}P_r\\P_\theta\end{array}\right]
    
   
  b=[Pr​Pθ​​]其中
 
  
   
    
     m
    
    
     =
    
    
     2
    
    
     l
    
   
   
    m=2l
   
  
 m=2l,方程组
 
  
   
    
     A
    
    
     x
    
    
     =
    
    
     b
    
   
   
    Ax=b
   
  
 Ax=b的具体形式如下所示
  
   
    
     
      {
     
     
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           ⋯
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            r
           
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            1
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           
            y
           
           
            1
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            2
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           
            y
           
           
            2
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            3
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           
            y
           
           
            3
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            4
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           
            y
           
           
            4
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            5
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           
            y
           
           
            5
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            6
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           
            y
           
           
            6
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            7
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           
            y
           
           
            7
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            8
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           
            y
           
           
            8
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            9
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            9
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           
            y
           
           
            9
           
          
          
           )
          
         
        
       
      
      
       
        
         
          
           γ
          
          
           (
          
          
           
            x
           
           
            1
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            2
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            3
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            4
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            5
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            6
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            7
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            8
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
          
           +
          
          
           ⋯
          
          
           +
          
          
           γ
          
          
           (
          
          
           
            x
           
           
            10
           
          
          
           ,
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
       
        
         
          
          
           =
          
          
           
            P
           
           
            θ
           
          
          
           (
          
          
           
            y
           
           
            10
           
          
          
           )
          
         
        
       
      
     
    
    
     \left\{\begin{aligned}\gamma(x_1,y_1)+\gamma(x_1,y_2)+\gamma(x_1,y_3)+\gamma(x_1,y_4)+\gamma(x_1,y_5)+\gamma(x_1,y_6)+\gamma(x_1,y_7)+\gamma(x_1,y_8)+\gamma(x_1,y_9)+\gamma(x_1,y_{10})&=P_r(x_1)\\\gamma(x_2,y_1)+\gamma(x_2,y_2)+\gamma(x_2,y_3)+\gamma(x_2,y_4)+\gamma(x_2,y_5)+\gamma(x_2,y_6)+\gamma(x_2,y_7)+\gamma(x_2,y_8)+\gamma(x_2,y_9)+\gamma(x_2,y_{10})&=P_r(x_2)\\ \gamma(x_3,y_1)+\gamma(x_3,y_2)+\gamma(x_3,y_3)+\gamma(x_3,y_4)+\gamma(x_3,y_5)+\gamma(x_3,y_6)+\gamma(x_3,y_7)+\gamma(x_3,y_8)+\gamma(x_3,y_9)+\gamma(x_3,y_{10})&=P_r(x_3)\\\gamma(x_4,y_1)+\gamma(x_4,y_2)+\gamma(x_4,y_3)+\gamma(x_4,y_4)+\gamma(x_4,y_5)+\gamma(x_4,y_6)+\gamma(x_4,y_7)+\gamma(x_4,y_8)+\gamma(x_4,y_9)+\gamma(x_4,y_{10})&=P_r(x_4)\\\gamma(x_5,y_1)+\gamma(x_5,y_2)+\gamma(x_5,y_3)+\gamma(x_5,y_4)+\gamma(x_5,y_5)+\gamma(x_5,y_6)+\gamma(x_5,y_7)+\gamma(x_5,y_8)+\gamma(x_5,y_9)+\gamma(x_5,y_{10})&=P_r(x_5)\\\gamma(x_6,y_1)+\gamma(x_6,y_2)+\gamma(x_6,y_3)+\gamma(x_6,y_4)+\gamma(x_6,y_5)+\gamma(x_6,y_6)+\gamma(x_6,y_7)+\gamma(x_6,y_8)+\gamma(x_6,y_9)+\gamma(x_6,y_{10})&=P_r(x_6)\\ \gamma(x_7,y_1)+\gamma(x_7,y_2)+\gamma(x_7,y_3)+\gamma(x_7,y_4)+\gamma(x_7,y_5)+\gamma(x_7,y_6)+\gamma(x_7,y_7)+\gamma(x_7,y_8)+\gamma(x_7,y_9)+\gamma(x_7,y_{10})&=P_r(x_7)\\\gamma(x_8,y_1)+\gamma(x_8,y_2)+\gamma(x_8,y_3)+\gamma(x_8,y_4)+\gamma(x_8,y_5)+\gamma(x_8,y_6)+\gamma(x_8,y_7)+\gamma(x_8,y_8)+\gamma(x_8,y_9)+\gamma(x_8,y_{10})&=P_r(x_8)\\\gamma(x_{9},y_1)+\gamma(x_{9},y_2)+\gamma(x_{9},y_3)+\gamma(x_{9},y_4)+\gamma(x_{9},y_5)+\gamma(x_{9},y_6)+\gamma(x_{9},y_7)+\gamma(x_{9},y_8)+\gamma(x_{9},y_9)+\gamma(x_{9},y_{10})&=P_r(x_{9})\\\gamma(x_{10},y_1)+\gamma(x_{10},y_2)+\gamma(x_{10},y_3)+\gamma(x_{10},y_4)+\gamma(x_{10},y_5)+\gamma(x_{10},y_6)+\gamma(x_{10},y_7)+\gamma(x_{10},y_8)+\cdots+\gamma(x_{10},y_{10})&=P_r(x_{10})\\\gamma(x_1,y_1)+\gamma(x_2,y_1)+\gamma(x_3,y_1)+\gamma(x_4,y_1)+\gamma(x_5,y_1)+\gamma(x_6,y_1)+\gamma(x_7,y_1)+\gamma(x_8,y_1)+\gamma(x_9,y_1)+\gamma(x_{10},y_{1})&=P_\theta(y_1)\\\gamma(x_1,y_2)+\gamma(x_2,y_2)+\gamma(x_3,y_2)+\gamma(x_4,y_2)+\gamma(x_5,y_2)+\gamma(x_6,y_2)+\gamma(x_7,y_2)+\gamma(x_8,y_2)+\gamma(x_9,y_2)+\gamma(x_{10},y_{2})&=P_\theta(y_2)\\\gamma(x_1,y_3)+\gamma(x_2,y_3)+\gamma(x_3,y_3)+\gamma(x_4,y_3)+\gamma(x_5,y_3)+\gamma(x_6,y_3)+\gamma(x_7,y_3)+\gamma(x_8,y_3)+\gamma(x_9,y_3)+\gamma(x_{10},y_{3})&=P_\theta(y_3)\\\gamma(x_1,y_4)+\gamma(x_2,y_4)+\gamma(x_3,y_4)+\gamma(x_4,y_4)+\gamma(x_5,y_4)+\gamma(x_6,y_4)+\gamma(x_7,y_4)+\gamma(x_8,y_4)+\gamma(x_9,y_4)+\gamma(x_{10},y_{4})&=P_\theta(y_4)\\\gamma(x_1,y_5)+\gamma(x_2,y_5)+\gamma(x_3,y_5)+\gamma(x_4,y_5)+\gamma(x_5,y_5)+\gamma(x_6,y_5)+\gamma(x_7,y_5)+\gamma(x_8,y_5)+\gamma(x_9,y_5)+\gamma(x_{10},y_{5})&=P_\theta(y_5)\\\gamma(x_1,y_6)+\gamma(x_2,y_6)+\gamma(x_3,y_6)+\gamma(x_4,y_6)+\gamma(x_5,y_6)+\gamma(x_6,y_6)+\gamma(x_7,y_6)+\gamma(x_8,y_6)+\gamma(x_9,y_6)+\gamma(x_{10},y_{6})&=P_\theta(y_6)\\\gamma(x_1,y_7)+\gamma(x_2,y_7)+\gamma(x_3,y_7)+\gamma(x_4,y_7)+\gamma(x_5,y_7)+\gamma(x_6,y_7)+\gamma(x_7,y_7)+\gamma(x_8,y_7)+\gamma(x_9,y_7)+\gamma(x_{10},y_{7})&=P_\theta(y_7)\\\gamma(x_1,y_8)+\gamma(x_2,y_8)+\gamma(x_3,y_8)+\gamma(x_4,y_8)+\gamma(x_5,y_8)+\gamma(x_6,y_8)+\gamma(x_7,y_8)+\gamma(x_8,y_8)+\gamma(x_9,y_8)+\gamma(x_{10},y_{8})&=P_\theta(y_8)\\\gamma(x_1,y_9)+\gamma(x_2,y_9)+\gamma(x_3,y_9)+\gamma(x_4,y_9)+\gamma(x_5,y_9)+\gamma(x_6,y_9)+\gamma(x_7,y_9)+\gamma(x_8,y_9)+\gamma(x_9,y_9)+\gamma(x_{10},y_{9})&=P_\theta(y_9)\\\gamma(x_1,y_{10})+\gamma(x_2,y_{10})+\gamma(x_3,y_{10})+\gamma(x_4,y_{10})+\gamma(x_5,y_{10})+\gamma(x_6,y_{10})+\gamma(x_7,y_{10})+\gamma(x_8,y_{10})+\cdots+\gamma(x_{10},y_{10})&=P_\theta(y_{10})\end{aligned}\right.
    
   
  ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧​γ(x1​,y1​)+γ(x1​,y2​)+γ(x1​,y3​)+γ(x1​,y4​)+γ(x1​,y5​)+γ(x1​,y6​)+γ(x1​,y7​)+γ(x1​,y8​)+γ(x1​,y9​)+γ(x1​,y10​)γ(x2​,y1​)+γ(x2​,y2​)+γ(x2​,y3​)+γ(x2​,y4​)+γ(x2​,y5​)+γ(x2​,y6​)+γ(x2​,y7​)+γ(x2​,y8​)+γ(x2​,y9​)+γ(x2​,y10​)γ(x3​,y1​)+γ(x3​,y2​)+γ(x3​,y3​)+γ(x3​,y4​)+γ(x3​,y5​)+γ(x3​,y6​)+γ(x3​,y7​)+γ(x3​,y8​)+γ(x3​,y9​)+γ(x3​,y10​)γ(x4​,y1​)+γ(x4​,y2​)+γ(x4​,y3​)+γ(x4​,y4​)+γ(x4​,y5​)+γ(x4​,y6​)+γ(x4​,y7​)+γ(x4​,y8​)+γ(x4​,y9​)+γ(x4​,y10​)γ(x5​,y1​)+γ(x5​,y2​)+γ(x5​,y3​)+γ(x5​,y4​)+γ(x5​,y5​)+γ(x5​,y6​)+γ(x5​,y7​)+γ(x5​,y8​)+γ(x5​,y9​)+γ(x5​,y10​)γ(x6​,y1​)+γ(x6​,y2​)+γ(x6​,y3​)+γ(x6​,y4​)+γ(x6​,y5​)+γ(x6​,y6​)+γ(x6​,y7​)+γ(x6​,y8​)+γ(x6​,y9​)+γ(x6​,y10​)γ(x7​,y1​)+γ(x7​,y2​)+γ(x7​,y3​)+γ(x7​,y4​)+γ(x7​,y5​)+γ(x7​,y6​)+γ(x7​,y7​)+γ(x7​,y8​)+γ(x7​,y9​)+γ(x7​,y10​)γ(x8​,y1​)+γ(x8​,y2​)+γ(x8​,y3​)+γ(x8​,y4​)+γ(x8​,y5​)+γ(x8​,y6​)+γ(x8​,y7​)+γ(x8​,y8​)+γ(x8​,y9​)+γ(x8​,y10​)γ(x9​,y1​)+γ(x9​,y2​)+γ(x9​,y3​)+γ(x9​,y4​)+γ(x9​,y5​)+γ(x9​,y6​)+γ(x9​,y7​)+γ(x9​,y8​)+γ(x9​,y9​)+γ(x9​,y10​)γ(x10​,y1​)+γ(x10​,y2​)+γ(x10​,y3​)+γ(x10​,y4​)+γ(x10​,y5​)+γ(x10​,y6​)+γ(x10​,y7​)+γ(x10​,y8​)+⋯+γ(x10​,y10​)γ(x1​,y1​)+γ(x2​,y1​)+γ(x3​,y1​)+γ(x4​,y1​)+γ(x5​,y1​)+γ(x6​,y1​)+γ(x7​,y1​)+γ(x8​,y1​)+γ(x9​,y1​)+γ(x10​,y1​)γ(x1​,y2​)+γ(x2​,y2​)+γ(x3​,y2​)+γ(x4​,y2​)+γ(x5​,y2​)+γ(x6​,y2​)+γ(x7​,y2​)+γ(x8​,y2​)+γ(x9​,y2​)+γ(x10​,y2​)γ(x1​,y3​)+γ(x2​,y3​)+γ(x3​,y3​)+γ(x4​,y3​)+γ(x5​,y3​)+γ(x6​,y3​)+γ(x7​,y3​)+γ(x8​,y3​)+γ(x9​,y3​)+γ(x10​,y3​)γ(x1​,y4​)+γ(x2​,y4​)+γ(x3​,y4​)+γ(x4​,y4​)+γ(x5​,y4​)+γ(x6​,y4​)+γ(x7​,y4​)+γ(x8​,y4​)+γ(x9​,y4​)+γ(x10​,y4​)γ(x1​,y5​)+γ(x2​,y5​)+γ(x3​,y5​)+γ(x4​,y5​)+γ(x5​,y5​)+γ(x6​,y5​)+γ(x7​,y5​)+γ(x8​,y5​)+γ(x9​,y5​)+γ(x10​,y5​)γ(x1​,y6​)+γ(x2​,y6​)+γ(x3​,y6​)+γ(x4​,y6​)+γ(x5​,y6​)+γ(x6​,y6​)+γ(x7​,y6​)+γ(x8​,y6​)+γ(x9​,y6​)+γ(x10​,y6​)γ(x1​,y7​)+γ(x2​,y7​)+γ(x3​,y7​)+γ(x4​,y7​)+γ(x5​,y7​)+γ(x6​,y7​)+γ(x7​,y7​)+γ(x8​,y7​)+γ(x9​,y7​)+γ(x10​,y7​)γ(x1​,y8​)+γ(x2​,y8​)+γ(x3​,y8​)+γ(x4​,y8​)+γ(x5​,y8​)+γ(x6​,y8​)+γ(x7​,y8​)+γ(x8​,y8​)+γ(x9​,y8​)+γ(x10​,y8​)γ(x1​,y9​)+γ(x2​,y9​)+γ(x3​,y9​)+γ(x4​,y9​)+γ(x5​,y9​)+γ(x6​,y9​)+γ(x7​,y9​)+γ(x8​,y9​)+γ(x9​,y9​)+γ(x10​,y9​)γ(x1​,y10​)+γ(x2​,y10​)+γ(x3​,y10​)+γ(x4​,y10​)+γ(x5​,y10​)+γ(x6​,y10​)+γ(x7​,y10​)+γ(x8​,y10​)+⋯+γ(x10​,y10​)​=Pr​(x1​)=Pr​(x2​)=Pr​(x3​)=Pr​(x4​)=Pr​(x5​)=Pr​(x6​)=Pr​(x7​)=Pr​(x8​)=Pr​(x9​)=Pr​(x10​)=Pθ​(y1​)=Pθ​(y2​)=Pθ​(y3​)=Pθ​(y4​)=Pθ​(y5​)=Pθ​(y6​)=Pθ​(y7​)=Pθ​(y8​)=Pθ​(y9​)=Pθ​(y10​)​其中矩阵
 
  
   
    
     A
    
   
   
    A
   
  
 A是一个大的
 
  
   
    
     0
    
   
   
    0
   
  
 0和
 
  
   
    
     1
    
   
   
    1
   
  
 1的二值稀疏矩阵为
  
   
    
     
      A
     
     
      =
     
     
      
       [
      
      
       
        
         
          
           1
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
       
       
        
         
          
           0
          
         
        
        
         
          
           1
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
       
       
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           1
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
       
       
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           1
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
       
       
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           1
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
       
       
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           1
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
       
       
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           1
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
       
       
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           1
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
       
       
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           1
          
         
        
        
         
          
           0
          
         
        
       
       
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           0
          
         
        
        
         
          
           1
          
         
        
       
       
        
         
          
           
            e
           
           
            1
           
          
         
        
        
         
          
           
            e
           
           
            1
           
          
         
        
        
         
          
           
            e
           
           
            1
           
          
         
        
        
         
          
           
            e
           
           
            1
           
          
         
        
        
         
          
           
            e
           
           
            1
           
          
         
        
        
         
          
           
            e
           
           
            1
           
          
         
        
        
         
          
           
            e
           
           
            1
           
          
         
        
        
         
          
           
            e
           
           
            1
           
          
         
        
        
         
          
           
            e
           
           
            1
           
          
         
        
        
         
          
           
            e
           
           
            1
           
          
         
        
       
       
        
         
          
           
            e
           
           
            2
           
          
         
        
        
         
          
           
            e
           
           
            2
           
          
         
        
        
         
          
           
            e
           
           
            2
           
          
         
        
        
         
          
           
            e
           
           
            2
           
          
         
        
        
         
          
           
            e
           
           
            2
           
          
         
        
        
         
          
           
            e
           
           
            2
           
          
         
        
        
         
          
           
            e
           
           
            2
           
          
         
        
        
         
          
           
            e
           
           
            2
           
          
         
        
        
         
          
           
            e
           
           
            2
           
          
         
        
        
         
          
           
            e
           
           
            2
           
          
         
        
       
       
        
         
          
           
            e
           
           
            3
           
          
         
        
        
         
          
           
            e
           
           
            3
           
          
         
        
        
         
          
           
            e
           
           
            3
           
          
         
        
        
         
          
           
            e
           
           
            3
           
          
         
        
        
         
          
           
            e
           
           
            3
           
          
         
        
        
         
          
           
            e
           
           
            3
           
          
         
        
        
         
          
           
            e
           
           
            3
           
          
         
        
        
         
          
           
            e
           
           
            3
           
          
         
        
        
         
          
           
            e
           
           
            3
           
          
         
        
        
         
          
           
            e
           
           
            3
           
          
         
        
       
       
        
         
          
           
            e
           
           
            4
           
          
         
        
        
         
          
           
            e
           
           
            4
           
          
         
        
        
         
          
           
            e
           
           
            4
           
          
         
        
        
         
          
           
            e
           
           
            4
           
          
         
        
        
         
          
           
            e
           
           
            4
           
          
         
        
        
         
          
           
            e
           
           
            4
           
          
         
        
        
         
          
           
            e
           
           
            4
           
          
         
        
        
         
          
           
            e
           
           
            4
           
          
         
        
        
         
          
           
            e
           
           
            4
           
          
         
        
        
         
          
           
            e
           
           
            4
           
          
         
        
       
       
        
         
          
           
            e
           
           
            5
           
          
         
        
        
         
          
           
            e
           
           
            5
           
          
         
        
        
         
          
           
            e
           
           
            5
           
          
         
        
        
         
          
           
            e
           
           
            5
           
          
         
        
        
         
          
           
            e
           
           
            5
           
          
         
        
        
         
          
           
            e
           
           
            5
           
          
         
        
        
         
          
           
            e
           
           
            5
           
          
         
        
        
         
          
           
            e
           
           
            5
           
          
         
        
        
         
          
           
            e
           
           
            5
           
          
         
        
        
         
          
           
            e
           
           
            5
           
          
         
        
       
       
        
         
          
           
            e
           
           
            6
           
          
         
        
        
         
          
           
            e
           
           
            6
           
          
         
        
        
         
          
           
            e
           
           
            6
           
          
         
        
        
         
          
           
            e
           
           
            6
           
          
         
        
        
         
          
           
            e
           
           
            6
           
          
         
        
        
         
          
           
            e
           
           
            6
           
          
         
        
        
         
          
           
            e
           
           
            6
           
          
         
        
        
         
          
           
            e
           
           
            6
           
          
         
        
        
         
          
           
            e
           
           
            6
           
          
         
        
        
         
          
           
            e
           
           
            6
           
          
         
        
       
       
        
         
          
           
            e
           
           
            7
           
          
         
        
        
         
          
           
            e
           
           
            7
           
          
         
        
        
         
          
           
            e
           
           
            7
           
          
         
        
        
         
          
           
            e
           
           
            7
           
          
         
        
        
         
          
           
            e
           
           
            7
           
          
         
        
        
         
          
           
            e
           
           
            7
           
          
         
        
        
         
          
           
            e
           
           
            7
           
          
         
        
        
         
          
           
            e
           
           
            7
           
          
         
        
        
         
          
           
            e
           
           
            7
           
          
         
        
        
         
          
           
            e
           
           
            7
           
          
         
        
       
       
        
         
          
           
            e
           
           
            8
           
          
         
        
        
         
          
           
            e
           
           
            8
           
          
         
        
        
         
          
           
            e
           
           
            8
           
          
         
        
        
         
          
           
            e
           
           
            8
           
          
         
        
        
         
          
           
            e
           
           
            8
           
          
         
        
        
         
          
           
            e
           
           
            8
           
          
         
        
        
         
          
           
            e
           
           
            8
           
          
         
        
        
         
          
           
            e
           
           
            8
           
          
         
        
        
         
          
           
            e
           
           
            8
           
          
         
        
        
         
          
           
            e
           
           
            8
           
          
         
        
       
       
        
         
          
           
            e
           
           
            9
           
          
         
        
        
         
          
           
            e
           
           
            9
           
          
         
        
        
         
          
           
            e
           
           
            9
           
          
         
        
        
         
          
           
            e
           
           
            9
           
          
         
        
        
         
          
           
            e
           
           
            9
           
          
         
        
        
         
          
           
            e
           
           
            9
           
          
         
        
        
         
          
           
            e
           
           
            9
           
          
         
        
        
         
          
           
            e
           
           
            9
           
          
         
        
        
         
          
           
            e
           
           
            9
           
          
         
        
        
         
          
           
            e
           
           
            9
           
          
         
        
       
       
        
         
          
           
            e
           
           
            10
           
          
         
        
        
         
          
           
            e
           
           
            10
           
          
         
        
        
         
          
           
            e
           
           
            10
           
          
         
        
        
         
          
           
            e
           
           
            10
           
          
         
        
        
         
          
           
            e
           
           
            10
           
          
         
        
        
         
          
           
            e
           
           
            10
           
          
         
        
        
         
          
           
            e
           
           
            10
           
          
         
        
        
         
          
           
            e
           
           
            10
           
          
         
        
        
         
          
           
            e
           
           
            10
           
          
         
        
        
         
          
           
            e
           
           
            10
           
          
         
        
       
      
      
       ]
      
     
    
    
     A=\left[\begin{array}{cccccccccc}\bf{1}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}\\\bf{0}&\bf{1}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}\\\bf{0}&\bf{0}&\bf{1}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}\\\bf{0}&\bf{0}&\bf{0}&\bf{1}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}\\\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{1}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}\\\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{1}&\bf{0}&\bf{0}&\bf{0}&\bf{0}\\\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{1}&\bf{0}&\bf{0}&\bf{0}\\\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{1}&\bf{0}&\bf{0}\\\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{1}&\bf{0}\\\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{0}&\bf{1}\\{\bf{e}}_1&{\bf{e}}_1&{\bf{e}}_1&{\bf{e}}_1&{\bf{e}}_1&{\bf{e}}_1&{\bf{e}}_1&{\bf{e}}_1&{\bf{e}}_1&{\bf{e}}_1\\{\bf{e}}_2&{\bf{e}}_2&{\bf{e}}_2&{\bf{e}}_2&{\bf{e}}_2&{\bf{e}}_2&{\bf{e}}_2&{\bf{e}}_2&{\bf{e}}_2&{\bf{e}}_2\\{\bf{e}}_3&{\bf{e}}_3&{\bf{e}}_3&{\bf{e}}_3&{\bf{e}}_3&{\bf{e}}_3&{\bf{e}}_3&{\bf{e}}_3&{\bf{e}}_3&{\bf{e}}_3\\{\bf{e}}_4&{\bf{e}}_4&{\bf{e}}_4&{\bf{e}}_4&{\bf{e}}_4&{\bf{e}}_4&{\bf{e}}_4&{\bf{e}}_4&{\bf{e}}_4&{\bf{e}}_4\\{\bf{e}}_5&{\bf{e}}_5&{\bf{e}}_5&{\bf{e}}_5&{\bf{e}}_5&{\bf{e}}_5&{\bf{e}}_5&{\bf{e}}_5&{\bf{e}}_5&{\bf{e}}_5\\{\bf{e}}_6&{\bf{e}}_6&{\bf{e}}_6&{\bf{e}}_6&{\bf{e}}_6&{\bf{e}}_6&{\bf{e}}_6&{\bf{e}}_6&{\bf{e}}_6&{\bf{e}}_6\\{\bf{e}}_7&{\bf{e}}_7&{\bf{e}}_7&{\bf{e}}_7&{\bf{e}}_7&{\bf{e}}_7&{\bf{e}}_7&{\bf{e}}_7&{\bf{e}}_7&{\bf{e}}_7\\{\bf{e}}_8&{\bf{e}}_8&{\bf{e}}_8&{\bf{e}}_8&{\bf{e}}_8&{\bf{e}}_8&{\bf{e}}_8&{\bf{e}}_8&{\bf{e}}_8&{\bf{e}}_8\\{\bf{e}}_9&{\bf{e}}_9&{\bf{e}}_9&{\bf{e}}_9&{\bf{e}}_9&{\bf{e}}_9&{\bf{e}}_9&{\bf{e}}_9&{\bf{e}}_9&{\bf{e}}_9\\{\bf{e}}_{10}&{\bf{e}}_{10}&{\bf{e}}_{10}&{\bf{e}}_{10}&{\bf{e}}_{10}&{\bf{e}}_{10}&{\bf{e}}_{10}&{\bf{e}}_{10}&{\bf{e}}_{10}&{\bf{e}}_{10}\end{array}\right]
    
   
  A=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡​1000000000e1​e2​e3​e4​e5​e6​e7​e8​e9​e10​​0100000000e1​e2​e3​e4​e5​e6​e7​e8​e9​e10​​0010000000e1​e2​e3​e4​e5​e6​e7​e8​e9​e10​​0001000000e1​e2​e3​e4​e5​e6​e7​e8​e9​e10​​0000100000e1​e2​e3​e4​e5​e6​e7​e8​e9​e10​​0000010000e1​e2​e3​e4​e5​e6​e7​e8​e9​e10​​0000001000e1​e2​e3​e4​e5​e6​e7​e8​e9​e10​​0000000100e1​e2​e3​e4​e5​e6​e7​e8​e9​e10​​0000000010e1​e2​e3​e4​e5​e6​e7​e8​e9​e10​​0000000001e1​e2​e3​e4​e5​e6​e7​e8​e9​e10​​⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤​其中向量
 
  
   
    
     1
    
   
   
    \bf{1}
   
  
 1,
 
  
   
    
     0
    
   
   
    \bf{0}
   
  
 0和
 
  
   
    
     
      e
     
     
      i
     
    
   
   
    {\bf{e}}_i
   
  
 ei​具体取值如下所示
  
   
    
     
      1
     
     
      =
     
     
      [
     
     
      1
     
     
      ,
     
     
      1
     
     
      ,
     
     
      1
     
     
      ,
     
     
      1
     
     
      ,
     
     
      1
     
     
      ,
     
     
      1
     
     
      ,
     
     
      1
     
     
      ,
     
     
      1
     
     
      ,
     
     
      1
     
     
      ,
     
     
      1
     
     
      ]
     
     
      ∈
     
     
      
       R
      
      
       
        1
       
       
        ×
       
       
        10
       
      
     
    
    
     {\bf{1}}=[1,1,1,1,1,1,1,1,1,1]\in \mathbb{R}^{1\times 10}
    
   
  1=[1,1,1,1,1,1,1,1,1,1]∈R1×10
  
   
    
     
      0
     
     
      =
     
     
      [
     
     
      0
     
     
      ,
     
     
      0
     
     
      ,
     
     
      0
     
     
      ,
     
     
      0
     
     
      ,
     
     
      0
     
     
      ,
     
     
      0
     
     
      ,
     
     
      0
     
     
      ,
     
     
      0
     
     
      ,
     
     
      0
     
     
      ,
     
     
      0
     
     
      ]
     
     
      ∈
     
     
      
       R
      
      
       
        1
       
       
        ×
       
       
        10
       
      
     
    
    
     {\bf{0}}=[0,0,0,0,0,0,0,0,0,0]\in \mathbb{R}^{1\times 10}
    
   
  0=[0,0,0,0,0,0,0,0,0,0]∈R1×10
  
   
    
     
      
       e
      
      
       i
      
     
     
      [
     
     
      l
     
     
      ]
     
     
      =
     
     
      
       {
      
      
       
        
         
          
           
            1
           
           
            ,
           
          
         
        
        
         
          
           
            l
           
           
            =
           
           
            i
           
          
         
        
       
       
        
         
          
           
            0
           
           
            ,
           
          
         
        
        
         
          
           
            l
           
           
            ≠
           
           
            i
           
          
         
        
       
      
      
       ,
      
      
      
       
        e
       
       
        i
       
      
      
       ∈
      
      
       
        R
       
       
        
         1
        
        
         ×
        
        
         10
        
       
      
      
       ,
      
      
      
       i
      
      
       ∈
      
      
       {
      
      
       1
      
      
       ,
      
      
       ⋯
       
      
       ,
      
      
       10
      
      
       }
      
     
    
    
     {\bf{e}}_i[l]=\left\{\begin{array}{ll}1,&l=i\\0,&l\ne i\end{array},\quad {\bf{e}}_i\in \mathbb{R}^{1\times 10}, \quad i\in\{1,\cdots,10\}\right.
    
   
  ei​[l]={1,0,​l=il​=i​,ei​∈R1×10,i∈{1,⋯,10}通过求解线性规划问题得到的最优传输方案的示意图如下所示

对偶线性规划求解

当随机变量的离散状态数量与输入变量的维数呈指数关系时,线性规划标准型求解在这些情况下就很不实用,例如在深度学习图像领域中,用

     G
    
    
     A
    
    
     N
    
   
   
    \mathrm{GAN}
   
  
 GAN生成图片其输入的维度可以很容易达到数千维,此时就不会用线性规划标准型进行求解矩阵
 
  
   
    
     Γ
    
   
   
    \Gamma
   
  
 Γ。
 
  
   
    
     G
    
    
     A
    
    
     N
    
   
   
    \mathrm{GAN}
   
  
 GAN的核心目的利用分布
 
  
   
    
     
      P
     
     
      r
     
    
   
   
    P_r
   
  
 Pr​生成一个与真实分布尽可能相同的分布
 
  
   
    
     
      P
     
     
      θ
     
    
   
   
    P_\theta
   
  
 Pθ​,所以并不需要关注联合概率分布
 
  
   
    
     γ
    
   
   
    \gamma
   
  
 γ,而是关注生成分布
 
  
   
    
     
      P
     
     
      r
     
    
   
   
    P_r
   
  
 Pr​和真实分布
 
  
   
    
     
      P
     
     
      θ
     
    
   
   
    P_\theta
   
  
 Pθ​的
 
  
   
    
     E
    
    
     M
    
    
     D
    
   
   
    \mathrm{EMD}
   
  
 EMD数值(推土机距离),然后将该距离看做成损失函数进而求解梯度
 
  
   
    
     
      ∇
     
     
      
       P
      
      
       θ
      
     
    
    
     
      E
     
     
      M
     
     
      D
     
    
   
   
    \nabla_{P_\theta}\mathrm{EMD}
   
  
 ∇Pθ​​EMD并对网络进行训练。任何线性规划的初始形式都有其对偶形式如下所示
  
   
    
     
      
       
        p
       
       
        r
       
       
        i
       
       
        m
       
       
        a
       
       
        l
       
       
         
       
       
        f
       
       
        o
       
       
        r
       
       
        m
       
       
        :
       
       
      
      
       
        
         
          
           
            m
           
           
            i
           
           
            n
           
           
            i
           
           
            m
           
           
            i
           
           
            z
           
           
            e
           
          
         
        
        
         
          
           
            z
           
           
            =
           
           
            
             c
            
            
             ⊤
            
           
           
            x
           
          
         
        
       
       
        
         
          
           
            s
           
           
            .
           
           
            t
           
           
            .
           
          
         
        
        
         
          
           
            {
           
           
            
             
              
               
                
                 A
                
                
                 x
                
               
              
             
             
              
               
                
                
                 =
                
                
                 b
                
               
              
             
            
            
             
              
               
                x
               
              
             
             
              
               
                
                
                 ≥
                
                
                 0
                
               
              
             
            
           
          
         
        
       
      
      
       ∣
      
     
     
      
       d
      
      
       u
      
      
       a
      
      
       l
      
      
        
      
      
       f
      
      
       o
      
      
       r
      
      
       m
      
      
       :
      
     
     
     
      
       
        
         
          
           m
          
          
           a
          
          
           x
          
          
           i
          
          
           m
          
          
           i
          
          
           z
          
          
           e
          
         
        
       
       
        
         
          
           
            z
           
           
            ^
           
          
          
           =
          
          
           
            b
           
           
            ⊤
           
          
          
           y
          
         
        
       
      
      
       
        
         
          
           s
          
          
           .
          
          
           t
          
          
           .
          
         
        
       
       
        
         
          
           
            A
           
           
            ⊤
           
          
          
           .
          
          
           y
          
          
           ≤
          
          
           c
          
         
        
       
      
      
       
        
         
        
       
       
        
         
        
       
      
     
    
    
     \left. {\bf{primal\text{ } form:\quad}}\begin{array}{rc}\mathrm{minimize}&z=c^{\top}x\\\mathrm{s.t.}&\left\{\begin{aligned}Ax&=b\\x &\ge 0\end{aligned}\right.\end{array}\right|{\bf{dual \text{ }form:}}\quad\begin{array}{rc}\mathrm{maximize}&\hat{z}=b^{\top}y\\\mathrm{s.t.}&A^{\top}.y \le c\\&\end{array}
    
   
  primal form:minimizes.t.​z=c⊤x{Axx​=b≥0​​∣∣∣∣∣∣∣​dual form:maximizes.t.​z^=b⊤yA⊤.y≤c​将求解初始问题的最小值转化为求解其对偶问题的最大值,目标
 
  
   
    
     
      z
     
     
      ^
     
    
   
   
    \hat{z}
   
  
 z^直接依赖于
 
  
   
    
     b
    
   
   
    b
   
  
 b,其中
 
  
   
    
     b
    
   
   
    b
   
  
 b包含概率分布
 
  
   
    
     
      P
     
     
      r
     
    
   
   
    P_r
   
  
 Pr​和
 
  
   
    
     
      P
     
     
      θ
     
    
   
   
    P_\theta
   
  
 Pθ​。初始线性规划
 
  
   
    
     z
    
   
   
    z
   
  
 z的最小值是对偶线性规划
 
  
   
    
     
      z
     
     
      ^
     
    
   
   
    \hat{z}
   
  
 z^最大值的上界,具体则有
  
   
    
     
      z
     
     
      =
     
     
      
       c
      
      
       ⊤
      
     
     
      x
     
     
      ≥
     
     
      
       y
      
      
       ⊤
      
     
     
      A
     
     
      x
     
     
      =
     
     
      
       y
      
      
       ⊤
      
     
     
      b
     
     
      =
     
     
      
       z
      
      
       ^
      
     
    
    
     z=c^{\top}x\ge y^{\top}Ax=y^{\top}b=\hat{z}
    
   
  z=c⊤x≥y⊤Ax=y⊤b=z^以上不等式称为弱对偶定理。强对偶定理则是初始线性规划
 
  
   
    
     z
    
   
   
    z
   
  
 z的最小值等于对偶线性规划
 
  
   
    
     
      z
     
     
      ^
     
    
   
   
    \hat{z}
   
  
 z^最大值即
 
  
   
    
     z
    
    
     =
    
    
     
      z
     
     
      ^
     
    
   
   
    z=\hat{z}
   
  
 z=z^。利用对偶形式计算推土机距离
 
  
   
    
     E
    
    
     M
    
    
     D
    
   
   
    \mathrm{EMD}
   
  
 EMD,假定
  
   
    
     
      
       y
      
      
       ∗
      
     
     
      =
     
     
      
       [
      
      
       
        
         
          
           f
          
         
        
       
       
        
         
          
           g
          
         
        
       
      
      
       ]
      
     
    
    
     y^{*}=\left[\begin{array}{c}{\bf{f}}\\{\bf{g}}\end{array}\right]
    
   
  y∗=[fg​]其中
 
  
   
    
     
      f
     
     
      ,
     
     
      g
     
    
    
     ∈
    
    
     
      R
     
     
      
       l
      
      
       ×
      
      
       1
      
     
    
   
   
    {\bf{f,g}}\in\mathbb{R}^{l\times 1}
   
  
 f,g∈Rl×1,进一步根据上公式则有
  
   
    
     
      
       E
      
      
       M
      
      
       D
      
     
     
      (
     
     
      
       P
      
      
       r
      
     
     
      ,
     
     
      
       P
      
      
       θ
      
     
     
      )
     
     
      =
     
     
      
       f
      
      
       ⊤
      
     
     
      
       P
      
      
       r
      
     
     
      +
     
     
      
       g
      
      
       ⊤
      
     
     
      
       P
      
      
       θ
      
     
    
    
     \mathrm{EMD}(P_r,P_\theta)={\bf{f}}^{\top}P_r+{\bf{g}}^{\top}P_\theta
    
   
  EMD(Pr​,Pθ​)=f⊤Pr​+g⊤Pθ​其中向量
 
  
   
    
     f
    
   
   
    {\bf{f}}
   
  
 f和
 
  
   
    
     g
    
   
   
    {\bf{g}}
   
  
 g的值分别由函数
 
  
   
    
     f
    
    
     (
    
    
     ⋅
    
    
     )
    
   
   
    f(\cdot)
   
  
 f(⋅)和
 
  
   
    
     g
    
    
     (
    
    
     ⋅
    
    
     )
    
   
   
    g(\cdot)
   
  
 g(⋅)可得
  
   
    
     
      
       {
      
      
       
        
         
          
           
            f
           
           
            i
           
          
         
        
        
         
          
           
           
            =
           
           
            f
           
           
            (
           
           
            
             x
            
            
             i
            
           
           
            )
           
          
         
        
       
       
        
         
          
           
            g
           
           
            i
           
          
         
        
        
         
          
           
           
            =
           
           
            g
           
           
            (
           
           
            
             x
            
            
             i
            
           
           
            )
           
          
         
        
       
      
     
     
      ,
     
     
     
      i
     
     
      ∈
     
     
      {
     
     
      1
     
     
      ,
     
     
      ⋯
      
     
      ,
     
     
      n
     
     
      }
     
    
    
     \left\{\begin{aligned}{\bf{f}}_i&=f(x_i)\\{\bf{g}}_i&=g(x_i)\end{aligned}\right.,\quad i\in\{1,\cdots,n\}
    
   
  {fi​gi​​=f(xi​)=g(xi​)​,i∈{1,⋯,n}对偶形式的约束为
 
  
   
    
     
      A
     
     
      ⊤
     
    
    
     y
    
    
     ≤
    
    
     c
    
   
   
    A^{\top}y\le c
   
  
 A⊤y≤c,以上约束条件展开则有
  
   
    
     
      f
     
     
      (
     
     
      
       x
      
      
       i
      
     
     
      )
     
     
      +
     
     
      g
     
     
      (
     
     
      
       x
      
      
       j
      
     
     
      )
     
     
      ≤
     
     
      
       D
      
      
       
        i
       
       
        j
       
      
     
     
      =
     
     
      ∥
     
     
      
       x
      
      
       i
      
     
     
      −
     
     
      
       x
      
      
       j
      
     
     
      ∥
     
     
      ,
     
     
     
      i
     
     
      ,
     
     
      j
     
     
      ∈
     
     
      {
     
     
      1
     
     
      ,
     
     
      ⋯
      
     
      ,
     
     
      n
     
     
      }
     
    
    
     f(x_i)+g(x_j)\le D_{ij}=\|x_i-x_j\|,\quad i,j\in\{1,\cdots,n\}
    
   
  f(xi​)+g(xj​)≤Dij​=∥xi​−xj​∥,i,j∈{1,⋯,n}此时对偶形式可以整理为如下形式
  
   
    
     
      
       
        E
       
       
        M
       
       
        D
       
      
      
       1
      
     
     
      (
     
     
      
       P
      
      
       r
      
     
     
      ,
     
     
      
       P
      
      
       θ
      
     
     
      )
     
     
      =
     
     
      
       
        max
       
       
        ⁡
       
      
      
       
        f
       
       
        ,
       
       
        g
       
      
     
     
      
       {
      
      
       
        
         ∑
        
        
         
          i
         
         
          =
         
         
          1
         
        
        
         n
        
       
       
        [
       
       
        f
       
       
        (
       
       
        
         x
        
        
         i
        
       
       
        )
       
       
        
         P
        
        
         r
        
       
       
        (
       
       
        
         x
        
        
         i
        
       
       
        )
       
       
        +
       
       
        g
       
       
        (
       
       
        
         x
        
        
         i
        
       
       
        )
       
       
        
         P
        
        
         θ
        
       
       
        (
       
       
        
         x
        
        
         i
        
       
       
        )
       
       
        ]
       
       
        ∣
       
      
      
       ∀
      
      
       i
      
      
       ,
      
      
       j
      
      
       ,
      
      
      
       f
      
      
       (
      
      
       
        x
       
       
        i
       
      
      
       )
      
      
       +
      
      
       g
      
      
       (
      
      
       
        x
       
       
        j
       
      
      
       )
      
      
       ≤
      
      
       
        D
       
       
        
         i
        
        
         j
        
       
      
      
       }
      
     
    
    
     \mathrm{EMD}^{1}(P_r,P_\theta)=\max\limits_{f,g}\left\{\left.\sum\limits_{i=1}^n[f(x_i)P_r(x_i)+g(x_i)P_{\theta}(x_i)]\right|\forall i,j, \quad f(x_i)+g(x_j)\le D_{ij} \right\}
    
   
  EMD1(Pr​,Pθ​)=f,gmax​{i=1∑n​[f(xi​)Pr​(xi​)+g(xi​)Pθ​(xi​)]∣∣∣∣∣​∀i,j,f(xi​)+g(xj​)≤Dij​}又因为当
 
  
   
    
     i
    
    
     =
    
    
     j
    
   
   
    i=j
   
  
 i=j时,则有
  
   
    
     
      f
     
     
      (
     
     
      
       x
      
      
       i
      
     
     
      )
     
     
      +
     
     
      g
     
     
      (
     
     
      
       x
      
      
       i
      
     
     
      )
     
     
      ≤
     
     
      
       D
      
      
       
        i
       
       
        i
       
      
     
     
      =
     
     
      0
     
    
    
     f(x_i)+g(x_i)\le D_{ii}=0
    
   
  f(xi​)+g(xi​)≤Dii​=0进而可知
  
   
    
     
      
       
        
         
          
           ∑
          
          
           
            i
           
           
            =
           
           
            1
           
          
          
           n
          
         
         
          [
         
         
          f
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          
           P
          
          
           r
          
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          +
         
         
          g
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          
           P
          
          
           θ
          
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          ]
         
        
       
      
      
       
        
         
         
          ≤
         
         
          
           ∑
          
          
           
            i
           
           
            =
           
           
            1
           
          
          
           n
          
         
         
          [
         
         
          f
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          
           P
          
          
           r
          
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          −
         
         
          f
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          
           P
          
          
           θ
          
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          ]
         
        
       
      
     
    
    
     \begin{aligned}\sum\limits_{i=1}^n[f(x_i)P_r(x_i)+g(x_i)P_{\theta}(x_i)]& \le \sum\limits_{i=1}^n[f(x_i)P_r(x_i)-f(x_i)P_{\theta}(x_i)]\end{aligned}
    
   
  i=1∑n​[f(xi​)Pr​(xi​)+g(xi​)Pθ​(xi​)]​≤i=1∑n​[f(xi​)Pr​(xi​)−f(xi​)Pθ​(xi​)]​所以当函数
 
  
   
    
     g
    
    
     =
    
    
     −
    
    
     f
    
   
   
    g=-f
   
  
 g=−f时,则有
  
   
    
     
      
       
        E
       
       
        M
       
       
        D
       
      
      
       1
      
     
     
      (
     
     
      
       P
      
      
       r
      
     
     
      ,
     
     
      
       P
      
      
       θ
      
     
     
      )
     
     
      ≤
     
     
      
       
        E
       
       
        M
       
       
        D
       
      
      
       2
      
     
     
      (
     
     
      
       P
      
      
       r
      
     
     
      ,
     
     
      
       P
      
      
       θ
      
     
     
      )
     
     
      =
     
     
      
       
        max
       
       
        ⁡
       
      
      
       
        f
       
       
        ,
       
       
        −
       
       
        f
       
      
     
     
      
       
        {
       
       
        
         ∑
        
        
         
          i
         
         
          =
         
         
          1
         
        
        
         n
        
       
       
        [
       
       
        f
       
       
        (
       
       
        
         x
        
        
         i
        
       
       
        )
       
       
        
         P
        
        
         r
        
       
       
        (
       
       
        
         x
        
        
         i
        
       
       
        )
       
       
        −
       
       
        f
       
       
        (
       
       
        
         x
        
        
         i
        
       
       
        )
       
       
        
         P
        
        
         θ
        
       
       
        (
       
       
        
         x
        
        
         i
        
       
       
        )
       
       
        ]
       
       
        ∣
       
      
      
       ∀
      
      
       i
      
      
       ,
      
      
       j
      
      
       ,
      
      
      
       f
      
      
       (
      
      
       
        x
       
       
        i
       
      
      
       )
      
      
       −
      
      
       f
      
      
       (
      
      
       
        x
       
       
        j
       
      
      
       )
      
      
       ≤
      
      
       
        D
       
       
        
         i
        
        
         j
        
       
      
      
       }
      
     
    
    
     \mathrm{EMD}^1(P_r,P_{\theta})\le\mathrm{EMD}^{2}(P_r,P_\theta)=\max\limits_{f,-f}\left.\left\{\sum\limits_{i=1}^n[f(x_i)P_r(x_i)-f(x_i)P_{\theta}(x_i)]\right|\forall i,j,\quad f(x_i)-f(x_j)\le D_{ij}\right\}
    
   
  EMD1(Pr​,Pθ​)≤EMD2(Pr​,Pθ​)=f,−fmax​{i=1∑n​[f(xi​)Pr​(xi​)−f(xi​)Pθ​(xi​)]∣∣∣∣∣​∀i,j,f(xi​)−f(xj​)≤Dij​}又因为
 
  
   
    
     
      
       E
      
      
       M
      
      
       D
      
     
     
      2
     
    
    
     (
    
    
     
      P
     
     
      r
     
    
    
     ,
    
    
     
      P
     
     
      θ
     
    
    
     )
    
   
   
    \mathrm{EMD}^2(P_r,P_\theta)
   
  
 EMD2(Pr​,Pθ​)中的函数取值范围
 
  
   
    
     f
    
    
     ,
    
    
     −
    
    
     f
    
   
   
    f,-f
   
  
 f,−f是
 
  
   
    
     
      
       E
      
      
       M
      
      
       D
      
     
     
      1
     
    
    
     (
    
    
     
      P
     
     
      r
     
    
    
     ,
    
    
     
      P
     
     
      θ
     
    
    
     )
    
   
   
    \mathrm{EMD}^1(P_r,P_\theta)
   
  
 EMD1(Pr​,Pθ​)中函数取值范围
 
  
   
    
     f
    
    
     ,
    
    
     g
    
   
   
    f,g
   
  
 f,g的一个特例,则有
 
  
   
    
     
      
       E
      
      
       M
      
      
       D
      
     
     
      1
     
    
    
     (
    
    
     
      P
     
     
      r
     
    
    
     ,
    
    
     
      P
     
     
      θ
     
    
    
     )
    
    
     ≥
    
    
     
      
       E
      
      
       M
      
      
       D
      
     
     
      2
     
    
    
     (
    
    
     
      P
     
     
      r
     
    
    
     ,
    
    
     
      P
     
     
      θ
     
    
    
     )
    
   
   
    \mathrm{EMD}^1(P_r,P_\theta)\ge \mathrm{EMD}^2(P_r,P_\theta)
   
  
 EMD1(Pr​,Pθ​)≥EMD2(Pr​,Pθ​),综上所述则有
  
   
    
     
      
       E
      
      
       M
      
      
       D
      
     
     
      (
     
     
      
       P
      
      
       r
      
     
     
      ,
     
     
      
       P
      
      
       θ
      
     
     
      )
     
     
      =
     
     
      
       
        E
       
       
        M
       
       
        D
       
      
      
       1
      
     
     
      (
     
     
      
       P
      
      
       r
      
     
     
      ,
     
     
      
       P
      
      
       θ
      
     
     
      )
     
     
      =
     
     
      
       
        E
       
       
        M
       
       
        D
       
      
      
       2
      
     
     
      (
     
     
      
       P
      
      
       r
      
     
     
      ,
     
     
      
       P
      
      
       θ
      
     
     
      )
     
    
    
     \mathrm{EMD}(P_r,P_\theta)=\mathrm{EMD}^1(P_r,P_\theta)= \mathrm{EMD}^2(P_r,P_\theta)
    
   
  EMD(Pr​,Pθ​)=EMD1(Pr​,Pθ​)=EMD2(Pr​,Pθ​)又因为
  
   
    
     
      ∣
     
     
      f
     
     
      (
     
     
      
       x
      
      
       i
      
     
     
      )
     
     
      −
     
     
      f
     
     
      (
     
     
      
       x
      
      
       j
      
     
     
      )
     
     
      ≤
     
     
      ∣
     
     
      ∣
     
     
      
       x
      
      
       i
      
     
     
      −
     
     
      
       x
      
      
       j
      
     
     
      ∣
     
     
      ∣
     
    
    
     |f(x_i)-f(x_j)\le ||x_i-x_j||
    
   
  ∣f(xi​)−f(xj​)≤∣∣xi​−xj​∣∣所以
 
  
   
    
     f
    
   
   
    f
   
  
 f是
 
  
   
    
     1
    
   
   
    1
   
  
 1-
 
  
   
    
     L
    
    
     i
    
    
     p
    
    
     s
    
    
     c
    
    
     h
    
    
     i
    
    
     z
    
   
   
    \mathrm{Lipschiz}
   
  
 Lipschiz连续,所以可以将推土机距离
 
  
   
    
     
      E
     
     
      M
     
     
      D
     
    
    
     (
    
    
     
      P
     
     
      r
     
    
    
     ,
    
    
     
      P
     
     
      θ
     
    
    
     )
    
   
   
    \mathrm{EMD}(P_r,P_\theta)
   
  
 EMD(Pr​,Pθ​)对偶形式表示为
  
   
    
     
      
       
        
         
          
           E
          
          
           M
          
          
           D
          
         
         
          (
         
         
          
           P
          
          
           r
          
         
         
          ,
         
         
          
           P
          
          
           θ
          
         
         
          )
         
        
       
      
      
       
        
         
         
          =
         
         
          
           
            max
           
           
            ⁡
           
          
          
           
            ∥
           
           
            f
           
           
            ∥
           
           
            ≤
           
           
            1
           
          
         
         
          
           ∑
          
          
           
            i
           
           
            =
           
           
            1
           
          
          
           n
          
         
         
          [
         
         
          f
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          
           P
          
          
           r
          
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          −
         
         
          f
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          
           P
          
          
           θ
          
         
         
          (
         
         
          
           x
          
          
           i
          
         
         
          )
         
         
          ]
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
         
          =
         
         
          
           
            max
           
           
            ⁡
           
          
          
           
            ∥
           
           
            f
           
           
            ∥
           
           
            ≤
           
           
            1
           
          
         
         
          
           E
          
          
           
            x
           
           
            ∼
           
           
            
             P
            
            
             r
            
           
           
            (
           
           
            x
           
           
            )
           
          
         
         
          [
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          ]
         
         
          −
         
         
          
           E
          
          
           
            x
           
           
            ∼
           
           
            
             P
            
            
             θ
            
           
           
            (
           
           
            x
           
           
            )
           
          
         
         
          [
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          ]
         
        
       
      
     
    
    
     \begin{aligned}\mathrm{EMD}(P_r,P_\theta)&=\max\limits_{\|f\|\le 1}\sum\limits_{i=1}^n[f(x_i)P_r(x_i)-f(x_i)P_{\theta}(x_i)]\\&=\max\limits_{\|f\|\le 1}\mathbb{E}_{x\sim P_{r}(x)}[f(x)]-\mathbb{E}_{x\sim P_{\theta}(x)}[f(x)]\end{aligned}
    
   
  EMD(Pr​,Pθ​)​=∥f∥≤1max​i=1∑n​[f(xi​)Pr​(xi​)−f(xi​)Pθ​(xi​)]=∥f∥≤1max​Ex∼Pr​(x)​[f(x)]−Ex∼Pθ​(x)​[f(x)]​

     W
    
    
     a
    
    
     s
    
    
     s
    
    
     e
    
    
     r
    
    
     s
    
    
     t
    
    
     e
    
    
     i
    
    
     n
    
   
   
    \mathrm{Wasserstein}
   
  
 Wasserstein距离

     W
    
    
     a
    
    
     s
    
    
     s
    
    
     e
    
    
     r
    
    
     s
    
    
     t
    
    
     e
    
    
     i
    
    
     n
    
   
   
    \mathrm{Wasserstein}
   
  
 Wasserstein距离取
 
  
   
    
     1
    
   
   
    1
   
  
 1范数的时候则为推土机距离,以上考虑的概率分布是离散的情况。考虑随机变量是连续的情况,给定连续随机变量的分布
 
  
   
    
     
      p
     
     
      r
     
    
   
   
    p_r
   
  
 pr​和
 
  
   
    
     
      p
     
     
      θ
     
    
   
   
    p_\theta
   
  
 pθ​,并且它们是联合分布
 
  
   
    
     π
    
    
     (
    
    
     
      p
     
     
      r
     
    
    
     ,
    
    
     
      p
     
     
      θ
     
    
    
     )
    
   
   
    \pi(p_r,p_\theta)
   
  
 π(pr​,pθ​)的边缘分布,则
 
  
   
    
     W
    
    
     a
    
    
     s
    
    
     s
    
    
     e
    
    
     r
    
    
     s
    
    
     t
    
    
     e
    
    
     i
    
    
     n
    
   
   
    \mathrm{Wasserstein}
   
  
 Wasserstein距离表示为
  
   
    
     
      W
     
     
      (
     
     
      
       p
      
      
       r
      
     
     
      ,
     
     
      
       p
      
      
       θ
      
     
     
      )
     
     
      =
     
     
      
       
        inf
       
       
        ⁡
       
      
      
       
        γ
       
       
        ∈
       
       
        π
       
      
     
     
      
       ∫
      
      
       x
      
     
     
      
       ∫
      
      
       y
      
     
     
      ∥
     
     
      x
     
     
      −
     
     
      y
     
     
      ∥
     
     
      γ
     
     
      (
     
     
      x
     
     
      ,
     
     
      y
     
     
      )
     
     
      d
     
     
      x
     
     
      d
     
     
      y
     
     
      =
     
     
      
       
        inf
       
       
        ⁡
       
      
      
       
        γ
       
       
        ∈
       
       
        π
       
      
     
     
      
       E
      
      
       
        x
       
       
        ,
       
       
        y
       
       
        ∼
       
       
        γ
       
      
     
     
      [
     
     
      ∥
     
     
      x
     
     
      −
     
     
      y
     
     
      ∥
     
     
      ]
     
    
    
     W(p_r,p_\theta)=\inf_{\gamma \in \pi}\int\limits_x\int\limits_{y}\|x-y\|\gamma(x,y)dxdy=\inf\limits_{\gamma \in \pi}\mathbb{E}_{x,y\sim\gamma}[\|x-y\|]
    
   
  W(pr​,pθ​)=γ∈πinf​x∫​y∫​∥x−y∥γ(x,y)dxdy=γ∈πinf​Ex,y∼γ​[∥x−y∥]通过引入一个额外的函数
 
  
   
    
     f
    
    
     :
    
    
     x
    
    
     ⟼
    
    
     k
    
    
     ∈
    
    
     R
    
   
   
    f:x\longmapsto k\in \mathbb{R}
   
  
 f:x⟼k∈R,可以消除掉关于联合分布
 
  
   
    
     γ
    
   
   
    \gamma
   
  
 γ所有的约束条件
  
   
    
     
      
       
        
         
          W
         
         
          (
         
         
          
           p
          
          
           r
          
         
         
          ,
         
         
          
           p
          
          
           θ
          
         
         
          )
         
        
       
      
      
       
        
         
         
          =
         
         
          
           
            inf
           
           
            ⁡
           
          
          
           
            γ
           
           
            ∈
           
           
            π
           
          
         
         
          
           E
          
          
           
            x
           
           
            ,
           
           
            y
           
           
            ∼
           
           
            γ
           
          
         
         
          [
         
         
          ∥
         
         
          x
         
         
          −
         
         
          y
         
         
          ∥
         
         
          ]
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
         
          =
         
         
          
           
            inf
           
           
            ⁡
           
          
          
           
            γ
           
           
            ∈
           
           
            π
           
          
         
         
          
           E
          
          
           
            x
           
           
            ,
           
           
            y
           
           
            ∼
           
           
            γ
           
          
         
         
          [
         
         
          ∥
         
         
          x
         
         
          −
         
         
          y
         
         
          ∥
         
         
          +
         
         
          
           
            sup
           
           
            ⁡
           
          
          
           f
          
         
         
          
           E
          
          
           
            s
           
           
            ∼
           
           
            
             p
            
            
             r
            
           
          
         
         
          [
         
         
          f
         
         
          (
         
         
          s
         
         
          )
         
         
          ]
         
         
          −
         
         
          
           E
          
          
           
            t
           
           
            ∼
           
           
            
             p
            
            
             θ
            
           
          
         
         
          [
         
         
          f
         
         
          (
         
         
          t
         
         
          )
         
         
          ]
         
         
          −
         
         
          (
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          −
         
         
          f
         
         
          (
         
         
          y
         
         
          )
         
         
          )
         
         
          ]
         
        
       
      
     
     
      
       
        
       
      
      
       
        
         
         
          =
         
         
          
           
            inf
           
           
            ⁡
           
          
          
           γ
          
         
         
          
           
            sup
           
           
            ⁡
           
          
          
           f
          
         
         
          
           E
          
          
           
            x
           
           
            ,
           
           
            y
           
           
            ∼
           
           
            γ
           
          
         
         
          [
         
         
          ∥
         
         
          x
         
         
          −
         
         
          y
         
         
          ∥
         
         
          +
         
         
          
           E
          
          
           
            s
           
           
            ∼
           
           
            
             p
            
            
             r
            
           
          
         
         
          [
         
         
          f
         
         
          (
         
         
          s
         
         
          )
         
         
          ]
         
         
          −
         
         
          
           E
          
          
           
            t
           
           
            ∼
           
           
            
             p
            
            
             θ
            
           
          
         
         
          [
         
         
          f
         
         
          (
         
         
          t
         
         
          )
         
         
          ]
         
         
          −
         
         
          (
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          −
         
         
          f
         
         
          (
         
         
          y
         
         
          )
         
         
          )
         
         
          ]
         
        
       
      
     
    
    
     \begin{aligned}W(p_r,p_\theta)&=\inf\limits_{\gamma \in \pi}\mathbb{E}_{x,y\sim \gamma}[\|x-y\|]\\&=\inf\limits_{\gamma \in \pi}\mathbb{E}_{x,y\sim \gamma}[\|x-y\|+\sup\limits_{f} \mathbb{E}_{s \sim p_r}[f(s)]-\mathbb{E}_{t\sim p_\theta}[f(t)]-(f(x)-f(y))]\\&=\inf\limits_{\gamma}\sup\limits_{f}\mathbb{E}_{x,y\sim \gamma}[\|x-y\|+\mathbb{E}_{s\sim p_r}[f(s)]-\mathbb{E}_{t\sim p_{\theta}}[f(t)]-(f(x)-f(y))]\end{aligned}
    
   
  W(pr​,pθ​)​=γ∈πinf​Ex,y∼γ​[∥x−y∥]=γ∈πinf​Ex,y∼γ​[∥x−y∥+fsup​Es∼pr​​[f(s)]−Et∼pθ​​[f(t)]−(f(x)−f(y))]=γinf​fsup​Ex,y∼γ​[∥x−y∥+Es∼pr​​[f(s)]−Et∼pθ​​[f(t)]−(f(x)−f(y))]​其中有
  
   
    
     
      
       
        sup
       
       
        ⁡
       
      
      
       f
      
     
     
      
       E
      
      
       
        s
       
       
        ∼
       
       
        
         p
        
        
         r
        
       
      
     
     
      [
     
     
      f
     
     
      (
     
     
      s
     
     
      )
     
     
      ]
     
     
      −
     
     
      
       E
      
      
       
        t
       
       
        ∼
       
       
        
         p
        
        
         θ
        
       
      
     
     
      [
     
     
      f
     
     
      (
     
     
      t
     
     
      )
     
     
      ]
     
     
      −
     
     
      (
     
     
      f
     
     
      (
     
     
      x
     
     
      )
     
     
      −
     
     
      f
     
     
      (
     
     
      y
     
     
      )
     
     
      )
     
     
      ]
     
     
      =
     
     
      
       {
      
      
       
        
         
          
           
            0
           
           
            ,
           
          
         
        
        
         
          
           
            γ
           
           
            ∈
           
           
            π
           
          
         
        
       
       
        
         
          
           
            +
           
           
            ∞
           
           
            ,
           
          
         
        
        
         
          
           
            o
           
           
            t
           
           
            h
           
           
            e
           
           
            r
           
           
            w
           
           
            i
           
           
            s
           
           
            e
           
          
         
        
       
      
     
    
    
     \sup\limits_{f} \mathbb{E}_{s \sim p_r}[f(s)]-\mathbb{E}_{t\sim p_\theta}[f(t)]-(f(x)-f(y))]=\left\{\begin{array}{rl}0,& \gamma \in \pi \\ +\infty,& \mathrm{otherwise}\end{array}\right.
    
   
  fsup​Es∼pr​​[f(s)]−Et∼pθ​​[f(t)]−(f(x)−f(y))]={0,+∞,​γ∈πotherwise​以上问题是一个极大极小值双层优化问题,求解以上问题需要用到极小极大原理,在不改变解的前提下颠倒求解顺序,则有对偶形式如下所示
  
   
    
     
      
       
        
         
          W
         
         
          (
         
         
          
           p
          
          
           r
          
         
         
          ,
         
         
          
           p
          
          
           θ
          
         
         
          )
         
         
          =
         
        
       
      
      
       
        
         
         
          
           
            sup
           
           
            ⁡
           
          
          
           f
          
         
         
          
           
            inf
           
           
            ⁡
           
          
          
           γ
          
         
         
          
           E
          
          
           
            x
           
           
            ,
           
           
            y
           
           
            ∼
           
           
            γ
           
          
         
         
          [
         
         
          ∥
         
         
          x
         
         
          −
         
         
          y
         
         
          ∥
         
         
          +
         
         
          
           E
          
          
           
            s
           
           
            ∼
           
           
            
             p
            
            
             r
            
           
          
         
         
          [
         
         
          f
         
         
          (
         
         
          s
         
         
          )
         
         
          ]
         
         
          −
         
         
          
           E
          
          
           
            t
           
           
            ∼
           
           
            
             p
            
            
             θ
            
           
          
         
         
          [
         
         
          f
         
         
          (
         
         
          t
         
         
          )
         
         
          ]
         
         
          −
         
         
          (
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          −
         
         
          f
         
         
          (
         
         
          y
         
         
          )
         
         
          )
         
         
          ]
         
        
       
      
     
     
      
       
        
         =
        
       
      
      
       
        
         
         
          
           
            sup
           
           
            ⁡
           
          
          
           f
          
         
         
          
           E
          
          
           
            s
           
           
            ∼
           
           
            
             p
            
            
             r
            
           
          
         
         
          [
         
         
          f
         
         
          (
         
         
          s
         
         
          )
         
         
          ]
         
         
          −
         
         
          
           E
          
          
           
            t
           
           
            ∼
           
           
            
             p
            
            
             θ
            
           
          
         
         
          [
         
         
          f
         
         
          (
         
         
          t
         
         
          )
         
         
          ]
         
         
          +
         
         
          
           
            inf
           
           
            ⁡
           
          
          
           γ
          
         
         
          
           E
          
          
           
            x
           
           
            ,
           
           
            y
           
           
            ∼
           
           
            γ
           
          
         
         
          [
         
         
          ∥
         
         
          x
         
         
          −
         
         
          y
         
         
          ∥
         
         
          −
         
         
          (
         
         
          f
         
         
          (
         
         
          x
         
         
          )
         
         
          −
         
         
          f
         
         
          (
         
         
          y
         
         
          )
         
         
          )
         
         
          ]
         
        
       
      
     
    
    
     \begin{aligned}W(p_r,p_\theta)=&\sup\limits_{f}\inf\limits_{\gamma} \mathbb{E}_{x,y\sim \gamma}[\|x-y\|+\mathbb{E}_{s\sim p_r}[f(s)]-\mathbb{E}_{t \sim p_{\theta}}[f(t)]-(f(x)-f(y))]\\=&\sup\limits_{f}\mathbb{E}_{s\sim p_r}[f(s)]-\mathbb{E}_{t\sim p_{\theta}}[f(t)]+\inf\limits_{\gamma}\mathbb{E}_{x,y \sim \gamma}[\|x-y\|-(f(x)-f(y))]\end{aligned}
    
   
  W(pr​,pθ​)==​fsup​γinf​Ex,y∼γ​[∥x−y∥+Es∼pr​​[f(s)]−Et∼pθ​​[f(t)]−(f(x)−f(y))]fsup​Es∼pr​​[f(s)]−Et∼pθ​​[f(t)]+γinf​Ex,y∼γ​[∥x−y∥−(f(x)−f(y))]​又因为
  
   
    
     
      
       
        inf
       
       
        ⁡
       
      
      
       γ
      
     
     
      
       E
      
      
       
        x
       
       
        ,
       
       
        y
       
       
        ∼
       
       
        γ
       
      
     
     
      [
     
     
      ∥
     
     
      x
     
     
      −
     
     
      y
     
     
      ∥
     
     
      −
     
     
      (
     
     
      f
     
     
      (
     
     
      x
     
     
      )
     
     
      −
     
     
      f
     
     
      (
     
     
      y
     
     
      )
     
     
      )
     
     
      ]
     
     
      =
     
     
      
       {
      
      
       
        
         
          
           
            0
           
           
            ,
           
          
         
        
        
         
          
           
            ∥
           
           
            f
           
           
            
             ∥
            
            
             L
            
           
           
            ≤
           
           
            1
           
          
         
        
       
       
        
         
          
           
            −
           
           
            ∞
           
           
            ,
           
          
         
        
        
         
          
           
            o
           
           
            t
           
           
            h
           
           
            e
           
           
            r
           
           
            w
           
           
            i
           
           
            s
           
           
            e
           
          
         
        
       
      
     
    
    
     \inf\limits_{\gamma}\mathbb{E}_{x,y \sim \gamma}[\|x-y\|-(f(x)-f(y))]=\left\{\begin{array}{rl}0,& \|f\|_L \le 1\\-\infty,& \mathrm{otherwise}\end{array}\right.
    
   
  γinf​Ex,y∼γ​[∥x−y∥−(f(x)−f(y))]={0,−∞,​∥f∥L​≤1otherwise​则可得最后对偶形式如下所示
  
   
    
     
      W
     
     
      (
     
     
      
       p
      
      
       r
      
     
     
      ,
     
     
      
       p
      
      
       θ
      
     
     
      )
     
     
      =
     
     
      
       
        sup
       
       
        ⁡
       
      
      
       
        ∥
       
       
        f
       
       
        
         ∥
        
        
         L
        
       
       
        ≤
       
       
        1
       
      
     
     
      
       E
      
      
       
        s
       
       
        ∼
       
       
        
         p
        
        
         r
        
       
      
     
     
      [
     
     
      f
     
     
      (
     
     
      s
     
     
      )
     
     
      ]
     
     
      −
     
     
      
       E
      
      
       
        t
       
       
        ∼
       
       
        
         p
        
        
         θ
        
       
      
     
     
      [
     
     
      f
     
     
      (
     
     
      t
     
     
      )
     
     
      ]
     
    
    
     W(p_r,p_\theta)=\sup\limits_{\|f\|_L \le 1}\mathbb{E}_{s\sim p_r}[f(s)]-\mathbb{E}_{t\sim p_\theta}[f(t)]
    
   
  W(pr​,pθ​)=∥f∥L​≤1sup​Es∼pr​​[f(s)]−Et∼pθ​​[f(t)]该函数
 
  
   
    
     f
    
   
   
    f
   
  
 f适合用神经网络来逼近,而且这种方法的优点是,只需夹紧权值即可实现
 
  
   
    
     L
    
    
     i
    
    
     p
    
    
     s
    
    
     c
    
    
     h
    
    
     i
    
    
     t
    
    
     z
    
   
   
    \mathrm{Lipschitz}
   
  
 Lipschitz连续性。

相关代码

本文中所涉及线性规划求解,以及相关的示意图程如如下所示

import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import linprog
from matplotlib import cm
import matplotlib.colors as colors

l =10
P_r = np.array([12,7,4,1,19,14,9,6,3,2])
P_t = np.array([1,5,11,17,13,9,6,4,3,2])
P_r = P_r / np.sum(P_r)
P_t = P_t / np.sum(P_t)
plt.subplot(1,2,1)
plt.bar(range(l), P_r,1, color='limegreen', edgecolor='black',linewidth=5, alpha=1)
plt.axis('off')
plt.ylim(0,0.5)
plt.subplot(1,2,2)
plt.bar(range(l), P_t,1, color='fuchsia', edgecolor='black',linewidth=5, alpha=1)
plt.axis('off')
plt.ylim(0,0.5)
plt.tight_layout()
plt.show()

D = np.ndarray(shape=(l, l))for i inrange(l):for j inrange(l):
        D[i,j]=abs(range(l)[i]-range(l)[j])

A_r = np.zeros((l, l, l))
A_t = np.zeros((l, l, l))for i inrange(l):for j inrange(l):
        A_r[i, i, j]=1
        A_t[i, j, i]=1# print(A_r)

A = np.concatenate((A_r.reshape((l, l**2)), A_t.reshape((l, l**2))), axis=0)print("A: \n", A.shape,"\n")

b = np.concatenate((P_r, P_t), axis=0)
c = D.reshape((l**2))

opt_res = linprog(c, A_eq = A, b_eq = b, bounds=[0,None])
emd = opt_res.fun
gamma = opt_res.x.reshape((l,l))print('EMD:', emd,"\n")
plt.imshow(gamma, cmap=cm.rainbow, interpolation='nearest')
plt.axis('off')
plt.show()

plt.imshow(D, cmap=cm.rainbow, interpolation='nearest')
plt.axis('off')
plt.show()

opt_res = linprog(-b, A.T, c, bounds=(None,None))
emd =-opt_res.fun
f = opt_res.x[0:l]
g = opt_res.x[l:]print('dual EMD:', emd)print('f: \n', f)
plt.plot(range(l), f)
plt.show()print('g: \n', g)
plt.plot(range(l), g)
plt.show()

plt.bar(range(l), np.multiply(P_r, f),1, color='blue', alpha=1)
plt.ylim(-0.5,0.5)
plt.axis('off')
plt.show()

plt.bar(range(l), np.multiply(P_t, g),1, color='green', alpha=1)
plt.axis('off')
plt.ylim(-0.5,0.5)
plt.show()#check sum
emd = np.sum(np.multiply(P_r, f))+ np.sum(np.multiply(P_t, g))print("emd: ", emd)

cNorm = colors.Normalize(vmin=0, vmax=l)
colorMap = cm.ScalarMappable(norm=cNorm, cmap=cm.terrain)

current_bottom = np.zeros(l)
r =range(l)for i in r.__reversed__():
    plt.bar(r, gamma[r, i],1, color=colorMap.to_rgba(r), bottom=current_bottom)
    current_bottom = current_bottom + gamma[r, i]

plt.axis('off')
plt.ylim(0,0.5)
plt.show()

current_bottom = np.zeros(l)for i in r:
    plt.bar(r, gamma[i, r],1, color=colorMap.to_rgba(i), bottom=current_bottom)
    current_bottom = current_bottom + gamma[i, r]

plt.axis('off')
plt.ylim(0,0.5)
plt.show()
标签: 深度学习

本文转载自: https://blog.csdn.net/qq_38406029/article/details/122675382
版权归原作者 鬼道2022 所有, 如有侵权,请联系我们删除。

“推土机距离到Wassertein距离”的评论:

还没有评论